420 research outputs found

    An analysis and characterisation of publicly available conceptual models

    Get PDF
    Multiple conceptual data modelling languages exist, with newer version typically having more features to model the universe of discourse more precisely. The question arises, however, to what extent those features are actually used in extant models, and whether characteristic profiles can be discerned. We quantitatively evaluated this with a set of 105 UML Class Diagrams, ER and EER models, and ORM and ORM2 diagrams. When more features are available, they are used, but few times. Only 64\% of the entities are the kind of entities that appear in all three language families. Different profiles are identified that characterise how a typical UML, (E)ER and ORM diagram looks like

    An ontology-driven unifying metamodel of UML Class Diagrams, EER, and ORM2

    Get PDF
    Software interoperability and application integration can be realized \linebreak through using their respective conceptual data models, which may be represented in different conceptual data modeling languages. Such modeling languages seem similar, yet are known to be distinct. Several translations between subsets of the languages' features exist, but there is no unifying framework that respects most language features of the static structural components and constraints. We aim to fill this gap. To this end, we designed a common and unified ontology-driven metamodel of the static, structural components and constraints in such a way that it unifies ER, EER, UML Class Diagrams v2.4.1, and ORM and ORM2 such that each one is a proper fragment of the consistent metamodel. The paper also presents some notable insights into the relatively few common entities and constraints, an analysis on roles, relationships, and attributes, and other modeling motivations are discussed. We describe two practical use cases of the metamodel, being a quantitative assessment of the entities of 30 models in ER/EER, UML, and ORM/ORM2, and a qualitative evaluation of inter-model assertions

    Protein design in a lattice model of hydrophobic and polar amino acids

    Full text link
    A general strategy is described for finding which amino acid sequences have native states in a desired conformation (inverse design). The approach is used to design sequences of 48 hydrophobic and polar aminoacids on three-dimensional lattice structures. Previous studies employing a sequence-space Monte-Carlo technique resulted in the successful design of one sequence in ten attempts. The present work also entails the exploration of conformations that compete significantly with the target structure for being its ground state. The design procedure is successful in all the ten cases.Comment: RevTeX, 12 pages, 1 figur

    Conformational Proofreading: The Impact of Conformational Changes on the Specificity of Molecular Recognition

    Get PDF
    To perform recognition, molecules must locate and specifically bind their targets within a noisy biochemical environment with many look-alikes. Molecular recognition processes, especially the induced-fit mechanism, are known to involve conformational changes. This raises a basic question: Does molecular recognition gain any advantage by such conformational changes? By introducing a simple statistical-mechanics approach, we study the effect of conformation and flexibility on the quality of recognition processes. Our model relates specificity to the conformation of the participant molecules and thus suggests a possible answer: Optimal specificity is achieved when the ligand is slightly off target; that is, a conformational mismatch between the ligand and its main target improves the selectivity of the process. This indicates that deformations upon binding serve as a conformational proofreading mechanism, which may be selected for via evolution

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORFā€™s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    Alarming rates of virological failure and HIV-1 drug resistance amongst adolescents living with perinatal HIV in both urban and rural settings: evidence from the EDCTP READY-study in Cameroon

    Get PDF
    Objectives: Adolescents living with perinatal HIV infection (ALPHI) experience persistently high mortality rates, particularly in resource-limited settings. It is therefore clinically important for us to understand the therapeutic response, acquired HIV drug resistance (HIVDR) and associated factors among ALPHI, according to geographical location. Methods: A study was conducted among consenting ALPHI in two urban and two rural health facilities in the Centre Region of Cameroon. World Health Organization (WHO) clinical staging, self-reported adherence, HIVDR early warning indicators (EWIs), immunological status (CD4 count) and plasma viral load (VL) were assessed. For those experiencing virological failure (VF, VL ā‰„ 1000 copies/mL), HIVDR testing was performed and interpreted using the Stanford HIV Drug Resistance Database v.8.9-1. Results: Of the 270 participants, most were on nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens (61.7% urban vs. 82.2% rural), and about one-third were poorly adherent (30.1% vs. 35.1%). Clinical failure rates (WHO-stage III/IV) in both settings were < 15%. In urban settings, the immunological failure (IF) rate (CD4  < 250 cells/Ī¼L) was 15.8%, statistically associated with late adolescence, female gender and poor adherence. The VF rate was 34.2%, statistically associated with poor adherence and NNRTI-based antiretroviral therapy. In the rural context, the IF rate was 26.9% and the VF rate was 52.7%, both statistically associated with advanced clinical stages. HIVDR rate was over 90% in both settings. EWIs were delayed drug pick-up, drug stock-outs and suboptimal viral suppression. Conclusions: Poor adherence, late adolescent age, female gender and advanced clinical staging worsen IF. The VF rate is high and consistent with the presence of HIVDR in both settings, driven by poor adherence, NNRTI-based regimen and advanced clinical staging

    Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase

    Get PDF
    The development of new methods for gene addition to mammalian genomes is necessary to overcome the limitations of conventional genetic engineering strategies. Although a variety of DNA-modifying enzymes have been used to directly catalyze the integration of plasmid DNA into mammalian genomes, there is still an unmet need for enzymes that target a single specific chromosomal site. We recently engineered zinc-finger recombinase (ZFR) fusion proteins that integrate plasmid DNA into a synthetic target site in the human genome with exceptional specificity. In this study, we present a two-step method for utilizing these enzymes in any cell type at randomly-distributed target site locations. The piggyBac transposase was used to insert recombinase target sites throughout the genomes of human and mouse cell lines. The ZFR efficiently and specifically integrated a transfected plasmid into these genomic target sites and into multiple transposons within a single cell. Plasmid integration was dependent on recombinase activity and the presence of recombinase target sites. This work demonstrates the potential for broad applicability of the ZFR technology in genome engineering, synthetic biology and gene therapy

    A highly selective, label-free, homogenous luminescent switch-on probe for the detection of nanomolar transcription factor NF-kappaB

    Get PDF
    Transcription factors are involved in a number of important cellular processes. The transcription factor NF-ĪŗB has been linked with a number of cancers, autoimmune and inflammatory diseases. As a result, monitoring transcription factors potentially represents a means for the early detection and prevention of diseases. Most methods for transcription factor detection tend to be tedious and laborious and involve complicated sample preparation, and are not practical for routine detection. We describe herein the first label-free luminescence switch-on detection method for transcription factor activity using Exonuclease III and a luminescent ruthenium complex, [Ru(phen)2(dppz)]2+. As a proof of concept for this novel assay, we have designed a double-stranded DNA sequence bearing two NF-ĪŗB binding sites. The results show that the luminescence response was proportional to the concentration of the NF-ĪŗB subunit p50 present in the sample within a wide concentration range, with a nanomolar detection limit. In the presence of a known NF-ĪŗB inhibitor, oridonin, a reduction in the luminescence response of the ruthenium complex was observed. The reduced luminescence response of the ruthenium complex in the presence of small molecule inhibitors allows the assay to be applied to the high-throughput screening of chemical libraries to identify new antagonists of transcription factor DNA binding activity. This will allow the rapid and low cost identification and development of novel scaffolds for the treatment of diseases caused by the deregulation of transcription factor activity

    Local Gene Regulation Details a Recognition Code within the LacI Transcriptional Factor Family

    Get PDF
    The specific binding of regulatory proteins to DNA sequences exhibits no clear patterns of association between amino acids (AAs) and nucleotides (NTs). This complexity of protein-DNA interactions raises the question of whether a simple set of wide-coverage recognition rules can ever be identified. Here, we analyzed this issue using the extensive LacI family of transcriptional factors (TFs). We searched for recognition patterns by introducing a new approach to phylogenetic footprinting, based on the pervasive presence of local regulation in prokaryotic transcriptional networks. We identified a set of specificity correlations ā€“determined by two AAs of the TFs and two NTs in the binding sitesā€“ that is conserved throughout a dominant subgroup within the family regardless of the evolutionary distance, and that act as a relatively consistent recognition code. The proposed rules are confirmed with data of previous experimental studies and by events of convergent evolution in the phylogenetic tree. The presence of a code emphasizes the stable structural context of the LacI family, while defining a precise blueprint to reprogram TF specificity with many practical applications.Ministerio de Ciencia e InnovaciĆ³n, Spain (FormaciĆ³n de Profesorado Universitario fellowship)Ministerio de Ciencia e InnovaciĆ³n, Spain (grant BFU2008-03632/BMC)Madrid (Spain : Region) (grant CCG08-CSIC/SAL-3651

    Optimization of minimum set of proteinā€“DNA interactions: a quasi exact solution with minimum over-fitting

    Get PDF
    Motivation: A major limitation in modeling protein interactions is the difficulty of assessing the over-fitting of the training set. Recently, an experimentally based approach that integrates crystallographic information of C2H2 zinc fingerā€“DNA complexes with binding data from 11 mutants, 7 from EGR finger I, was used to define an improved interaction code (no optimization). Here, we present a novel mixed integer programming (MIP)-based method that transforms this type of data into an optimized code, demonstrating both the advantages of the mathematical formulation to minimize over- and under-fitting and the robustness of the underlying physical parameters mapped by the code
    • ā€¦
    corecore