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Abstract

Software interoperability and application integration can be realized
through using their respective conceptual data models, which may be rep-
resented in different conceptual data modeling languages. Such modeling
languages seem similar, yet are known to be distinct. Several translations
between subsets of the languages’ features exist, but there is no unifying
framework that respects most language features of the static structural com-
ponents and constraints. We aim to fill this gap. To this end, we designed
a common and unified ontology-driven metamodel of the static, structural
components and constraints in such a way that it unifies ER, EER, UML
Class Diagrams v2.4.1, and ORM and ORM2 such that each one is a proper
fragment of the consistent metamodel. The paper also presents some notable
insights into the relatively few common entities and constraints, an analysis
on roles, relationships, and attributes, and other modeling motivations are
discussed. We describe two practical use cases of the metamodel, being a
quantitative assessment of the entities of 30 models in ER/EER, UML, and
ORM/ORM2, and a qualitative evaluation of inter-model assertions.
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1. Introduction

Recent upscaling scientific collaboration in the life sciences [1] and phar-
macology!, launching and monitoring of e-government initiatives [2, 3], com-
pany mergers [4], integration frameworks [5], and a broader adoption of Se-
mantic Web technologies require complex software system development and
information integration from heterogeneous sources. While at the implemen-
tation and data level, markup languages and standards help interoperability
(e.g., SBML [6], BEL [7], GML [8], RDF [9]), the design of such systems typi-
cally involves a data analysis stage with the design and linking or integration
of conceptual models for the implementation-independent representation of
the data requirements. The various extant conceptual data modeling (CDM)
languages, such as UML [10], EER [11], ORM [12], MADS [13], and Telos
[14], each have their strengths and typically multiple models represented in
different languages are used for one system. Therefore, establishing connec-
tions between these conceptual models has become an important task. A
motivating use case to illustrate this is described in the following example,
which describes one of the problems.

Example 1. Consider the interoperability scenario between an EER dia-
gram and a UML class diagram where both are to be maintained as far as
possible, which is depicted in Figure 1. The EER diagram depicts a rudi-
mentary model for a database of a generic termbank, which assumes it to
be valid for all 11 official languages in South Africa. The UML diagram fo-
cuses on specific aspects of isiZulu terms for an isiZulu termbank that also
requires some application layer processing due to its agglutinative character-
istics. These diagrams are stylized and simplified from the actual model that
is being developed for the isiZulu termbank at the University of KwaZulu-
Natal [15], so as to illustrate the case rather than present models that span a
few pages. For instance, to record umuntu (person/human) in the termbank,
linguists need to have separated out the stem (ntu), the root (nt), suffix (u),
prefix (umu) and pre-prefix (u), and besides grammatical number (singu-
lar /plural/mass) also the noun class (there are 17—umuntu belongs to class
1). This enables posing queries such as “retrieve all terms with root ‘nt’ ” or
“retrieve all nouns of class 1a”, and computing various combinations in the
business layer, as normally isiZulu terms are ordered alphabetical by stem,

1See for example http://www.tipharma.com and http://www.phuse.eu.
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Figure 1: Example of an integration scenario with two diagrams in different languages
(names for the two left-most associations omitted due to width limitations).

not full term, where the full term is computed using the affixes of the noun
class.

Going by terms in the two models, there clearly are similarities, but it is
unclear how to link them such that the overall model and their associated
data remains consistent. We return to this problem in Section 4.2, where the
linking is assessed and resolved. <»

‘Traditional” information systems development and management exhibit
the capability of linking models represented in different languages only at
the physical schema layer [16] or only for conceptual models represented in
the same CDM language [17, 18]. Some results are available on transfor-
mations between CDM languages (e.g., [19, 20, 21]), but they cover only a
subset of all the languages’ features, as subtle representational and expressive
differences in the languages make this task very difficult. Consequently, cur-
rent tools offer only very limited functionality in linking or importing models
represented in one language into one represented in another language.For
example, mandatory and disjointness is catered for, but weak entity types,
identification, or attributes are not [16, 20, 22].

Any differences between the main CDM languages—UML Class Dia-
grams, ER, EER, ORM, and ORM2—may seem merely terminological, but
it is known not to be the case either from a metamodeling viewpoint [23] nor



even within the same family of languages [24]. Also, what may seem very
different at first glance may actually be the same, or at least share part of
their meaning. This concerns possible agreements or differences in ontolog-
ical foundation or commitment among the CDM languages. However, the
state of the art in this area has focused primarily on a single CDM language
and only for UML and ORM (e.g., [24, 25]), and across languages only at
the level of a few illustrations [26]. Put differently, it is unknown to what
extent the languages agree on their underlying principles for modeling infor-
mation. This is an obstacle for mapping and transformation algorithms in
CASE tools to let one work in parallel on conceptual data models represented
in different languages that otherwise could be highly useful in information
integration and complex system development. In addition, from a cognitive
viewpoint, a more precise insight in the commonalities and differences in the
underlying modeling principles will contribute to the understanding of the
extent to which the language features affects modeling information to tools,
methods, and methodologies for CDM development and maintenance.

An approach toward solving these issues is to devise a comprehensive for-
malization of the languages so as to manage their interaction. To be able
to do so, however, it first should be clear what entities and constraints ex-
ist in each language, how they can be used in the language, and how the
differences can be reconciled without changing the languages. Put differ-
ently, not a comparison of the respective metamodels, but a single integrated
metamodel inclusive of all language features is needed, so that one can unify
the CDM languages and design transformation algorithms at the conceptual
layer in software and database development. We designed such a unifying
metamodel for the static, structural components and constraints of UML
2.4.1 class diagrams, EER, and ORM2/FBM, which is, to the best of our
knowledge, the first of its kind. The metamodel is ontology-driven in the
sense that our arguments and modeling decisions use motivations taken from
the philosophical concept of Ontology, and ontologies in Computer and In-
formation Sciences. At this stage, we are not concerned with the argument
of convenience to fit with an a priori chosen logic language.

The unification makes clear the differences between and commonalities of
the selected CDM languages. Notably regarding the entities in the languages,
they agree only on Relationship (association) and Subsumption, Role (/associ-
ation end/relationship component), and Object type (/class/entity type) and
they all adhere to the positionalist ontological commitment for the meaning
of relationship. They have different approaches or ‘incomplete’ coverage of
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certain other features, however, such as attributes and weak entity types.
Also for constraints there is a small intersection of shared language features
out of the 49 constraints, being Mandatory, Cardinality, Single identification,
Disjointness and Completeness, and Subset constraints. Two use cases illus-
trate concrete usefulness of the metamodel: one focuses on the classification
of entities of 30 conceptual models into metamodel entities and the second
one reconsiders the two conceptual models from Example 1 and examines
their possible inter-model assertions, given the fine-grained semantics of the
metamodel.

The main contributions of the paper can be summarized as follows:

e The unifying metamodel of the three main language ‘families’, being
UML Class Diagrams, ER and EER, and ORM and ORM?2;

e The insight in the language features thanks to the ontology-driven ap-
proach of the analysis;

e The demonstration that there is, in fact, little overlap in actual lan-
guage features across the language families;

e Taken together, they constitute a solid theoretical foundation for CASE
tool development that supports all three language families, notably
facilitating inter-model assertions across models represented in different
languages and for converting a model in one language into another.

We discuss related work in Section 2, describe the metamodel in Section 3,

and demonstrate a selection of its use and usefulness in Section 4. We discuss
it in Section 5 and conclude in Section 6.

2. Related Work

There are different strands of research in different subfields that focus on
multiple CDM languages. We discuss systems-directed approaches, knowl-
edge representation ones, and compare it with our approach.

2.1. Systems-directed Approaches

A useful step before unifying CDM languages is a comparison of the lan-
guages through their metamodels (in ORM) that highlights their differences
[23]. In this section, however, we focus on the research on linking and unify-
ing models.

A partial unification was designed by Venable and Grundy [21] and imple-
mented in MViews [27] and Pounamu [28]. They developed the metamodel



in the CoCoA graphical language and it covers a fragment of ER and a frag-
ment of NIAM (which is a precursor to ORM), as they omitted, mainly, value
types, nested entity types, and composite attributes. In addition, NIAM is
forced to have the attributes as in ER in the ‘integrated’” metamodel, even
though attributes are treated differently in NIAM (for a discussion, see Sec-
tion 3.3). Consequently, Venable and Grundy’s “dynamic” ad hoc mappings
are limited.

Bowers and Delcambre [16] introduce a framework for representing schema
and data originating from several data models, being mainly relational, XML
and RDF. Its principal feature is a flat representation of schema and data,
and the possibility of establishing different levels of conformance between
them. However, its representation language ULD does not cover all language
features of UML, EER, and ORM, for it includes only ordinal, set and union
class constructs, and cardinality constraints.

Boyd and McBrien [20] developed the Hypergraph Data Model to relate
models represented in ER, relational, UML, and ORM, and they present
transformation rules between them. The advantage of using graphs as inter-
mediate representation is that it has a simple irreducible form for schemas
that can be used to prove schema (model) equivalence. Assessing the fea-
tures that are covered, we note that the representational language includes
inclusion, exclusion and union class constructs, and mandatory, unique and
reflexive constraints. The combination of these types of constraints gives a
language to express basic cardinality constraints and arbitrary keys, but it
omits roles, aggregation, and weak entity types and several constraints, such
as value comparison constraints, general frequency constraints, and most ring
constraints.

Atzeni et al. [17, 19] describe an automatic approach for translating
a model from one language to another, considering ER, UML and physical
schema languages. They achieve this by, first, specifying a “supermodel” that
is a dictionary of constructs, and those “metaconstructs” are used to char-
acterize different models, which are entities (called “abstracts”), attributes
(called “lexicals”), relationships, generalization, foreign keys, and complex
attributes, covering nine constructs overall. Subsequently, automatic transla-
tions between schemas are produced in the Datalog language, but translations
from a rich representational language, if possible, may require a sequence of
such basic translations.

There are other works that, based upon title and abstract, may seem rel-
evant, but upon closer inspection addresses a different problem than the one
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we are aiming to solve. For instance, consider the framework developed by
Thalheim [29] for modeling layered databases, possibly integrating databases
in different paradigms, such as OLAP systems and streaming databases: we
focus only on standard databases and object-oriented applications described
with CDM languages, hence, this type of database modeling is out of scope.

2.2. Knowledge Representation Approaches

There are several research projects to solve the issues from a knowledge
representation viewpoint, which typically have as ultimate aim automated
reasoning over conceptual data models. This can be divided into efforts in
logic-based reconstructions of conceptual models and reasoning [30, 31, 32,
33, 34, 35|, which can be considered as a prerequisite for unification, and
comparisons and unifications [22, 36]. The typical approach is to choose
a logic based on a broader research program or desired expressiveness and
computational complexity, and then to show it captures ‘sufficiently’ one or
more of the CDM languages. Due to these varying motivations, different
logics have been used for different CDM languages and even for one CDM
language, therewith still not providing the sought-after interoperability for
either of the languages or among each other. For instance, the Description
Logic (DL) language ALUNT was chosen as basis for a partial unification
some time ago [22], but other languages are used for the formalization, such
as DL-Lite and DLRity [30, 31], which are also incomplete regarding the
features they support. Complicating matters is that ORM has features that
render the language undecidable [37], so various FOL [32, 33], DL [38, 39],
and system-oriented logic-based reconstructions [40] are available. This being
the case, it is not possible to simply link them and implement it—some of
the languages used are not even implemented yet at all (e.g., DLR sy and
ALUNT). Once a comprehensive metamodel with all existing features is
available, they could be either formalized in one logic, or possibly the different
logics (if implemented) could be orchestrated by means of the Distributed
Ontology Language [41] and system that is in the process of standardization
(http://ontoiop.org).

2.3. Our approach

We take a different approach toward unification compared to the related
works, notably regarding scope and methodology. First, we aim to capture all
constructs of the languages under consideration and generalize in an ontology-
driven way so that the integrated metamodel subsumes the structural, static
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elements of EER, UML Class Diagrams v2.4.1, and ORM2. Thus, such an
integrated metamodel has as fragments the respective metamodels of EER,
UML Class Diagrams v2.4.1, and ORM2, therewith leaving the base lan-
guages intact. We include entities, objects, roles, relationships, attributes
in their various forms, data types, value types, and several class constructs,
and the constraints. This very broad variety of elements covers nearly all of
the elements in UML, EER and ORM, as shown in the Appendix; it omits
temporal aspects (a frozen attribute) and derived constraints. None of the
related works includes roles, aggregation, and relationship constraints, thus
only limited subsets of UML or ORM are covered. In underlying idea, it may
seem the same as the supermodel dictionary of Atzeni et al. [19], so one could
try to extend their MIDSTool. However, we not only include more constructs
and ORM, but also model the relations and constraints between them—i.e.,
a real ‘super’/metamodel, not a list of constructs. The main advantage is
the richer, finer-grained semantics to determine real equivalence and de facto
approximations. Other advantages are that part of what otherwise would
have to be encoded in various algorithms is now accessible in one place, and
that the metamodel can also be used to check whether the models that are
linked or transformed were adhering to the right syntax.

Methodologically, the metamodel we propose in this paper is ontologi-
cal rather than formal, which is in contrast to all other known works that
present first a formal common language for translations that leave aside im-
portant particular aspects of each language. Concerning this ontology-driven
approach, ontology-driven conceptual modeling can refer to i) logic-enhanced
and reasoner-enhanced conceptual modeling, ii) using a (section of a) domain
ontology in one’s model, iii) adapting a domain ontology into a conceptual
model for a specific application scenario, and iv) using insights from On-
tology and ontologies to enhance the quality of a conceptual data model.
For the metamodel we propose, we use principally the latter aspect of the
ontology-driven approach. This comprises understanding better the model-
ing language and to improve the modeling of some particular aspect of a
universe of discourse [42, 43, 44, 45]. For instance, using the Unifying Foun-
dational Ontology (UFO) to analyze and extend the UML 2.0 metamodel
Sortal Class in [25, 46], refining shared and composite aggregation in [47],
and looking into the nature of relationships in [24, 48]. Furthermore, with
respect to a specific domain, it can be used to model DNA [49] and catalytic
reactions [36]. We use such insights to analyze the underlying commonalities
and differences between the chosen CDMs as well as to enhance the quality of
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the metamodel. Only after having developed a conceptual model of all pos-
sible entities, constraints, and their relations in the selected languages, we
devised a comprehensive formalization in FOL [50] that is to be used for their
translations. The main benefit of this methodological approach is that it al-
lows one to have a comprehension of the scope and the meaning(s) of each
entity in each language whilst coping with the larger amount of elements.
Such an overview is an essential step towards achieving the full potential of
information sharing through their respective conceptual models.

3. Metamodel

In the strict sense, what we present here is an integrated conceptual model
about the entities and constraints in the selected modeling languages, in the
literature referred to typically as a metamodel. This metamodel covers all
their native features and is consistent. At this stage, it is not the purpose to
examine whether a particular language feature is a good one or how one can
make it better by using some ontological principles; we aim at representing
in a unified way what is present in the language. In order to achieve this,
we use several notions from Ontology (philosophy) and ontologies (artificial
intelligence) so as to increase understanding of the language features, to
reconcile or unify perceived differences, and to improve the quality of the
metamodel. Note that this does not turn the metamodel into an ontology,
for its scope is still just the selected modeling languages, not a logic-based
representation about all CDM languages past, present, and future.

The entities (in the general sense) are shown hierarchically in Figure 2
and the constraints in Figure 3 in UML Class Diagram notation. A white
fill of a class icon means that that entity is not present in either of the
languages, a light grey fill means that it is present in one language, dark
grey that it is present in two, and a black fill that it is present in all three
families of languages (EER, UML v2.4.1, ORM2). The constraints included
are only those that are explicitly available in the language as graphical or
textual constraint in the diagram. Naming conventions and terminological
differences and similarities of the entities are listed in the Appendix.

We describe several salient aspects of the metamodel and explain and
motivate its contents for object types (Section 3.1), roles and relationships
(Section 3.2), attributes and value types (Section 3.3), and constraints (Sec-
tion 3.4).
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Figure 2: Principal static entities of the metamodel.

3.1. Object Types

One of the principal entities is what we call Object type. The CDMs
refer to this as entity type, object type, and class, and, informally, also con-
cept. Philosophically, they may be referring to the same kind of thing even
though clear distinctions are made between classes, concepts, properties, and
universals in Ontology, and types and unary predicates in the field of math-
ematics. Class concerns set theory and its extension (a set of actual objects
as members), and two distinct classes must have different extensions. Con-
cept generally refers to a mind-dependent entity that may, or may not, have
individuals instantiating it [51]. Properties are “also called ‘attributes,” ‘qual-
ities,” ‘features,” ” [52], which can be relational, e.g., the property of being
married, or unary, e.g., a color or a shape. Universal generally refers to a
mind-independent entity that has at least one instance and it also uses the
instantiation relation [53]. Entity can mean whatever can be inferred from
the context in which the term is used, though in any case, that thing it refers
to is a discrete unit; hence, ‘entity’ can refer to an instance or object, or
to a universal, concept, or class. For some refinements specifically tailored
to CDM, see, e.g., [45]. Applying these notions to the relevant elements
in UML, EER, and ORM, the following can be observed. Class with its
set-orientation focuses on the extensional aspect and grouping similar things
together, whereas concepts and universals focus on the intension. Informally,
the latter are the descriptions, or a combination of properties, that those
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entities that instantiate them have; e.g., Orange is a fruit that has a Shape
that is spherical and has a Color that is green or orange.

With respect to ORM, EER, and UML, it could be that because these
CDM language use different terminology, they may have different ontological
commitments. The descriptions in the literature [10, 11, 54, 55] are varied.
For instance, the UML standard assumes the intensional notion, despite call-
ing it class: “The purpose of a class is to specify a classification of objects
and to specify the features that characterize the structure and behavior of
those objects.” (p. 49) (emphasis added) [10], whereas ORM has mixed de-
scriptions. While the original ER model uses entity sets, “we know that it
has the properties common to the other entities in the entity set” (p.11) [55]
and, more clearly in [11]: “Entity types conceptualize structuring of things
of reality through attributes.”. Despite some differences in formulation, it
does not make a real difference in the model: each one is used to denote a
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kind of thing where the relevant features are described, i.e., the intension,
and it will have an extension in the software as objects in object-oriented
software or tuples in a database table. Each of those objects is assumed to
represent an instance in reality, although one could design a database about
mind-dependent deities in the Stone Age. From an Ontology viewpoint, we
thus can postulate that the CDM’s entity type or class is mostly a universal,
and occasionally may be a concept, and the term we use henceforth for those
entities in CDMs that describe the intension is Object type, which does not
clash in intention with terminology in Ontology.

Object type has two subtypes: Weak object type and Nested object type.
Weak object type represents ER and EER’s weak entity type (see also Sec-
tion 3.4). Its ontological status may not be fully clear [25, 56], but it is
certainly an object type. This might seem less clear for Nested object type,
or association class, associative entity, or objectified fact type. Literature on
CDM languages discusses the idea of a “duality” of a nested object type
as being both a relationship and an object type, and therewith suggesting
a multiple inheritance of Nested object type to two supertypes, Relationship
and Object type (e.g., [46]). This is not correct, for it is ‘composed of’ a
relationship or at least the outcome of a reification of a relationship, which
is distinct from being a relationship. Therefore, the metamodel relates them
through a normal association (see Figure 4). The constraints for nested
object types are very basic so as to reflect the flexibility concerning reifica-
tion/objectification in UML and ORM: the UML standard does not mention
any restrictions for objectifying an association into an association class [10],
and earlier restrictions for objectification in ORM [12] have been lifted [57].

Example 2. Casting the elements of Figure 1 in terms of the metamodel
introduced so far, Morphology and Term in the EER diagram, and Affix, Mor-
phological Syntaxinfo, isiZuluTerm, and NounClass in the UML Class Diagram
are all categorized as Object type. There are no Weak object types and Nested
object types in the two models.

3.2. Relationships

As Figure 2 shows, there are four main types of relationship: subsump-
tion, part-whole relations, attributive properties, and qualified relationships,
with their carefully crafted disjointness axioms. Much can be discussed about
relationships, but we restrict ourselves to their nature and definition (not the
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possible types, as in [48]), and differences among them and with an object
type. We discuss separately afterwards qualified relationships and attributes.

A relationship, also called a relational property in Ontology [52], is an
entity that relates entities and thus it requires at least two entities to partic-
ipate in it. This is in contrast to an entity type that is a thing on its own,
be it independent or dependent on another entity. From this basic distinc-
tion, it follows that there are no unary relationships. The second difference
between relationship and entity type is due to the existence of, and their
relation to, roles, which are called association ends or member ends in UML
[10], roles in ORM and fact-based modeling [12, 32, 54], and components
of a relationship in EER [11, 55] (although on a quick reading, Chen’s ER
might seem to permit both). An object plays a role in a relationship and,
thus, a relationship is composed of at least two roles. This forms part of
the characterization of what Relationship is, and it assumes a commitment
to the positionalist stance as to the nature of relations and relationships (see
[58] for a good overview, which has been applied to ORM in [24]). All three
CDM languages have roles, which, from an information modeling viewpoint
at least, means that they form a part of the so-called ‘fundamental furniture
of the universe’. Thus, roles are ontologically distinct from both entity types
and relationships. Therefore, they appear in the metamodel as separate en-
tities (recall Figure 2), and Relationship, Role, and Entity Type are disjoint.
The interaction between them is depicted in Figure 4. It follows also that
roles will have to be first-class citizens in a formalization.

There are three points that deserve some attention still, of which we
discuss two here. First, the relationship between Role and Relationship in the
metamodel is a composite aggregation association, but ontologically this may
be an underspecification, for one perhaps could argue that a relationship is
even defined by its role-parts. Second, there is a ternary role playing between
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Role, Entity type, and Cardinality constraint, which captures that each role
must have exactly one entity type with at most one cardinality constraint,
and each entity type may play zero or more roles with or without declared
cardinality constraint. The third issue has to do with predicates and is
deferred to the discussion in Section 5.

Example 3. Casting the elements of Figure 1 in terms of the metamodel
introduced so far, Morphlnfo, Antonym, and Synonym in the EER diagram
are categorized as Relationship. The association ends in the UML Class Di-
agram for the associations between Affix and Morphological SyntaxInfo and
between Morphological SyntaxInfo and isiZuluTerm are omitted (due to width
limitations in drawing), whereas the association ends contains and belongs to
are categorized as Role in terms of the metamodel.

3.2.1. Subsumption Relationships

Regarding types of relationships, we have to address subsetting and sub-
typing of relationships, and aggregation.

Unconstrained subsumption of object types is included in all CDM lan-
guages except ER. There are some arguments against multiple inheritance
[59, 60], but this is driven by limitations of the OBO-language and/or that
subtypes must always be disjoint (an Aristotelian left-over). Neither holds
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necessarily for an arbitrary subject domain and, moreover, CDM languages
permit it; therefore, the constraints in the metamodel reflect this. Further-
more, because, say, a role subsuming an entity type results in an inconsis-
tency due to the disjointness, it makes sense to add a constraint “For each
sub participating in a Subsumption, there must be a matching super and its
participating Entity is of the same category as the Entity participating in the
sub”. However, this exclusion or type compatibility is not specified for the
languages, and therefore is not in the metamodel.

There is more to say about subsumption for relationships and roles. The
UML 2.4.1 standard distinguishes between subsetting where the association
ends and/or participating classes are sub-ends/sub-classes of those partic-
ipating in the super-association or indirectly through an association’s at-
tributes, and specialization of associations [10]. This specialization is not
set-oriented, due to the differences in intension of the association [10], al-
though the UML standard does not describe how that is supposed to work.
The only option to change an association’s intension is to restrict the re-
lational properties of an association, in analogy to intensional subsumption
in ontologies [61]. For instance, each relationship that is asymmetric is also
irreflexive. There are only a few such subsumptions, which are depicted
in Figure 3 based on the latest hierarchy [62], and little is known about
its practicality other than the experiments reported in [61] for ontologies.
Nevertheless, it may become relevant in the near future, and therefore this
subsumption is covered with Subsumption as well. Finally, both UML and
ORM include subsumption of roles, so that the participating entities for Sub-
sumption are Entity.

3.2.2. Aggregation Relationships

A lot of literature is available on UML’s shared and composite aggregation
(among many, [25, 47, 63]), yet the UML standard still does not offer clarity
on what they really are. Shared aggregation is generally matched to parthood
and composite aggregation to proper parthood, but aggregation is also used
for meronymic associations in UML Class Diagrams, such as member-of (see
[47] for an overview). Therefore, there is no subsumption relation between
the aggregations and parthood in the metamodel and there is no disjointness
axiom on the subtypes of PartWhole. The UML standard’s description of
aggregation also includes behavioral characteristics or lifecycle semantics of
the part and whole, which is not included in the metamodel because it is
beyond the scope of the static components that we focus on here.

15



In addition to the shared aggregation and the stricter cardinality con-
straint for composite aggregation, we use a part-whole relation for ER/EER’s
Composite attribute, which has as part (but not proper part) Attributive prop-
erty. The cardinality constraints are obvious from the whole-side—it is only
composite if there is more than one attribute part of it—whereas from the
part-side, we carry through the sharability of an attribute (see also next
section), hence, the 0..*.

Example 4. Casting the elements of Figure 1 in terms of the metamodel
introduced so far, the EER diagram does not have any subsumption, whereas
the UML Class Diagram has three subclasses of Affix, being Subsumption
relationships (in terms of the metamodel) with prefix, suffix, and preprefix.
There is no Shared aggregate and no Composite aggregate. <>

3.8. Attributes and Value types

From a logic-based perspective, the definition of an attribute is clear, as
given in Definition 1; e.g., an attribute hasColor that relates an object type
to a string: hasColor — Flower x String.

Definition 1. An attribute (A) is a binary relationship between a Relation-
ship or Object type (RU E) and a Data type (D), i.e., A RUE x D.

However, this is not straightforward for CDM languages, and ontologists have
various theoretical frameworks to deal with them (albeit only partially; see
(64, 65]). We describe what Ontology and ontologies have to say about their
counterpart to attributes, how it is included in UML, EER, and ORM, the
notion of an optional dimension of an attribute value, and how attributes are
represented in the metamodel and why.

3.3.1. Attributions in Ontology and ontologies

Object type, Value type, and Attributive property are disjoint either directly
or through their parent (Figure 2), which not only reflects their meaning in
the CDM languages but also can be motivated by Ontology and ontologies.
Provided one accepts the existence of properties, which the CDM languages
do, Ontology distinguishes between multiple types of properties [52]. Ontol-
ogy’s sortal property, or ‘sortal’ for short, refers to those things where one
distinguishes, classifies, and identifies objects and they can exist on their
own; e.g., Apple and Person. Ontology’s attribution or attributive property,
also called quality, such as the Color of an apple or its Shape, require a bearer
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to exist in which they inhere. A characteristic that makes them distinct
from other types of properties is that one cannot sort the objects by their
attribution and know what those objects are (other than, e.g., ‘red objects’
or ‘square objects’). An attribution is also formalized as a unary predicate
instead of as binary attribute like in Definition 1. Thus, attributions differ
from sortals, and philosophers agree on this matter. Philosophers do have
several theories for certain details of attributions, however, with a notable
distinction between whether they are universals or tropes or a combination
thereof, where a ‘trope’ inheres in a single individual so that they are grouped
by indistinguishability and make up an equivalence class rather than instan-
tiating a universal [64, 66]. Such differences are relevant for linking the
metamodel to a foundational ontology, but for the metamodel itself, there is
no requirement to commit to either one of them and therefore we leave this
option open.

That object types and attributive properties are distinct type of entities
is also reflected in extant foundational ontologies. For instance, DOLCE
distinguishes at the top-level between Quality (the attribution) and En-
durant/Perdurant (the object) [64]. GFO not only includes this ontological
distinction (differently from DOLCE, though), but also distinguishes between
dimensional versus other attributes and atomic versus non-atomic attributes
[65], where a non-atomic attribute is like EER’s composite attribute.

3.8.2. Attributions in UML, EER, ORM

Let us first illustrate a sample of different notational variations in the
CDM languages, as Figure 6 shows. UML class diagrams use the meaning
of attribute as given in Definition 1 and it is typically represented ‘inside’ a
class icon, like the color:string in Figure 6, but the attribute may be drawn
also as an association with a class icon at the far end for the data type using
the «datatype> stereotype [10]. ER and EER diagrams let one declare an
attribute only partially with the ER/EER entity type and the attribute name
but not the data type—assigning a datatype is carried out at the physical
design stage of database development. This may give the impression that
an ER/EER attribute is a unary entity, but the understanding reflected in
the formal foundation of ER and EER [11, 55], is that the attribute is as in
Definition 1. ER and EER also have composite and multivalued attributes,
which have been included in the metamodel (see Figure 2) because they are
in the languages, but, formally, there is no real addition, given that they can
be remodeled as basic attributes.
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A. UML Class Diagram (default and extended option) B. ORM 2 (two options)

lor - R

Car Car €0 Strin \ /
color: string 1 Car ); ;EI:I]_‘ Color |
speed: integer S 991d Integer as color /—-—_—_.4\

Speed |
C.ER D. EER has speed — — — —

(Barker notation)  (bubble notati — Color
Car D has color \(name)

Speed

has speed (km/h)

Figure 6: Examples of attributes in different CDM languages, with different notations.

Role Relationship 0. Dimension
1 [ declared * dimensiona
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1.* {or} 1.7 - 1
<]> ----{--}-—-‘I ZF ﬁ{dlsplnt, complete} range
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Mapped to domain Value type value type value typing
0..* [ participates in

Figure 7: Metamodel fragment for value properties and simple attributes; Dimensional
attribute is a reified version of the ternary relation dimensional attribution, and likewise for
Dimensional value type and dimensional value typing.

ORM is said to be an “attribute-free” language [12], but in the strict sense
of the meaning of attribute, they actually do have attributes in the language,
albeit hidden. Indeed, ORM does not have attributes ‘inside’ the entity type
like UML. UML’s binary attribute, such as the color of the car, can be repre-
sented in ORM as a unary value type Color that can be related to more than
one entity type through a user-defined relationship (ORM fact type). How-
ever, a data type has to be specified for each value type in an ORM diagram
and these two are related through an attribute. More precisely, an ORM
value type’s unique feature that distinguishes it from an ORM entity type
(in our metamodel, Object type), is that it has a mapped to relationship to the
datatype [54], i.e., mapped_to — ValueType x DataType, which is generated
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by the CASE tool once a value type and its data type have been declared. In
our example with the car’s color, the assertion mapped_to — Color X String
is added to the model, which is in addition to a binary relationship called,
say, hasColor that is asserted between Car (the object type) and Color (the
value type). Thus, ORM does have attributes in the strict sense of the mean-
ing. Practically from a modeling viewpoint, the principal difference between
how UML and ORM deal with attributions, is that ORM uses three entities
with two binary relationships where one of them is an attribute, whereas
UML collapses it all into one binary relationship.

Having settled on the meaning and inclusion of attributive properties in
the languages, we have to address one aspect of its inclusion in the meta-
model. According to the constraints in Figure 7, an attribute can be of a
relationship, of an object type, or both. That it may be of both may be
contentious, because one could assume that an attribute drawn in one Object
type or Relationship is different from an attribute with the same name and
data type that occurs in another Object type or Relationship, due to the fact
that the participating domain is different. Practically, UML and ER/EER
tools request from a modeler to add again any subsequent occurrence of an
attribute. However, theoretically as well as technically, there is no reason
not to keep a separate list of attributes for the whole model, and upon reuse,
select an earlier-defined one; e.g., declaring hasColor:Integer once, and using
it for both Table and Chair. This is common practice for OWL’s data prop-
erties [67] in ontology editors, which also still leaves open the option to add
another color attribute, say, hasColor:String when one has to make that dis-
tinction for another object type (e.g., Paint colors of the Pantone system).
Alternatively, one can allocate a unique identifier to each attribute and add
a constraint that it must have exactly one domain declaration that is either
an object type or a relationship, i.e, an {xor} instead of an {or} in Figure 7.
Practically, such a stricter constraint still can be implemented in the tools
and does not violate the metamodel. Notwithstanding, we keep the less con-
strained, more flexible way of permitting attribute reuse in the metamodel
just in case in the near future such more efficient and consistent attribute
management is implemented in the UML and EER CASE tools.

3.8.8. Attributive properties with a Dimension

It is possible to add a dimension of the value, such as cm, kg, or day to an
attribute or value type; i.e., there is an implicit meaning in the values that
has to do with measurements. For instance, when one needs to record the
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speed limit of a car, the measured value is not a mere integer or real, but
it refers to a value with respect to the measurement system (say, SI Units)
and we measure it in km/h. An attribute—e.g., hasSpeed — Car x Integer
does not contain any of that information, yet it ought to be included in the
specification of the attribute or value type, even if just to facilitate data
integration. ORM’s CASE tools allow for this specification in the graphical
interface, even though there is no formal characterization of it yet. The ORM
diagram serialization in the NORMA CASE tool (v. VS2010-2013-05CTP)
actually does not store the dimension separately, but it is merged in the name
of the value type.

There are two options to capture dimension of an attributive property’s
value more precisely and transparently: as a ternary, e.g.,

hasSpeed — Car x Integer x km/h,
or with three relations:

hasSpeed +— Car x Speed

mapped_to — Speed x Integer

hasDimension — Integer x km/h.
Although there are many interesting aspects about measurements and di-
mensions, and also different models for how to represent a whole system of
recording measurement data for a specific scenario (e.g., [68]), within the
scope of unification representing the notion that there is a dimension suf-
fices. Therefore, we chose for the more precise ternary relation dimensional
value typing in our metamodel, as Figure 7 shows, with a mandatory data
type and a dimension. The dimensional attribute is modeled in a similar
way (see Figure 7), although the UML standard does not mention anything
about dimensions explicitly. A ternary relationship does complicate the for-
mal apparatus, but we prefer this option because unification is the aim, and
therewith essentially permitting an extension of UML’s metamodel.

3.3.4. Qualifiers

Having established that UML has attributes, and that role and relation-
ship are distinct entities, we now can consider the Qualifier of a Qualified
relationship. A qualifier has one or more attributes, partitioning the objects
in the relationship. There are two main issues to consider. First, a qualifier
itself is also a property, somehow, and thus a property of another property. It
is not clear whether that other property is a UML association or association
end [10]. In addition, the UML standard has statements such as “If the list
is empty, then the Association is not qualified” ([10], p. 126) and “qualifier
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rectangle is part of the association path” ([10], p. 130) versus “Designates
the optional association end that owns a qualifier attribute” ([10], p. 126).
This may be settled at a later date, so for the time being, our metamodel
allows one or the other (see Figure 7, top-left). The second issue is the sta-
tus as to what a qualifier is. The Superstructure Specification mentions that
“A property may have other properties (attributes) that serve as qualifiers”
([10], p. 125, emphasis added)—as if an attribute plays a certain role in a
particular context—yet elsewhere that qualifier is “An optional list of or-
dered qualifier attributes for the end” ([10], p. 126). UML Qualifier appears
neither in its metamodel in the Superstructure Specification nor in the ODM
to disambiguate its nature (qualifier does not even appear in the ODM).
The latter statement combined with the graphical icon lets us lean toward a
unary property like a UML class, so therefore Qualifier has been added as a
subclass of Entity Type; Figure 7 shows additional relations and constraints.

Example 5. Casting the elements of Figure 1 in terms of the metamodel
introduced so far, the EER diagram has six attributes that are classified as
Attribute in the metamodel: 1D, Stem, Affix, Name, Grammatical Number, and
POS tag. The UML Class Diagram also has six attributes of type Attribute,
being: name (of the affix), stem, root, name (of the isiZulu term), code, and
grammNr. There is no Qualifier. {

3.4. Constraints

In this section, we consider constraints explicitly available in the language
as graphical or textual constraints in the diagram. Observe that, strictly
speaking, this does not include the Object Constraint Language (OCL) be-
cause OCL is an OMG standard separate from the UML standard. Figure 3
depicts the unified hierarchy of constraints, and individual details are shown
in Figures 8-17, which we motivate and discuss in the remainder of this
section. Note also that for this part of the metamodel, UML is not expres-
sive enough to represent the full details in the graphical representation, and,
where applicable, more precise/additional constraints holding for a particular
constraint are added to the figures as structured textual constraints.

3.4.1. Basic Constraints: Mandatory and Uniqueness

The most basic constraints common to all CDM languages are manda-
tory and functional/uniqueness constraints (see Figures 8 and 9). Besides
the basic Mandatory constraint—i.e., ‘at least one’, 1.., a solid blob or line,
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existentially quantified—there are two advanced mandatory constraints in
EER and ORM. ORM has also an icon for Disjunctive mandatory (inclusive-
or) on roles, where all instances of the object type must play at least one of
the (> 2) roles it participates in. This is also implicitly present in UML as an
{or} with 1..* as the more common {xor} has a flexible description that can
be interpreted as permitting {or} in addition to {xor} (see pp. 58-59 of [10]).
EER does not have this feature, because EER’s arc is always XOR, whereas
ORM’s disjunctive mandatory that can be inclusive. The Inclusive mandatory
is included to cater for EER’s AND for relationships. Also this constraint is
implicitly present in UML as {and} (see also pp. 58-59 of [10]). It is absent
in ORM as such, although it could be approximated with a join-equality (see
below).

Mandatory |[0..* 1.7
constraint | constrained declared

with on o 1
{disjoint}ﬁ deflared|on

Disjunctive | 0..*
mandatory

Role

Mandatory

0..1 | constrained with

{ If a Mandatory constraint is declared on two or more Roles,
then those Roles must be contained in distinct Relationships. }

Figure 8: Mandatory constraints.

Relationship

0, 2..* | participates in

Internal External 1 02" Role
uniqueness uniqueness declared on
I

0.* [

*

declared on

{ The cardinality of Internal uniqueness being declared on at least one Role
has a maximum cardinality less than or equal the number of Roles in
the Relationship that contains those Roles. }

{ The cardinality of Relationship and Role in ext unique is equal. }

{ The Roles on which an External uniqueness is declared on are contained in the
Relationships that participate in the ext unique. }

Figure 9: Uniqueness constraints.

An Internal uniqueness constraint on one role amounts to an ‘at most one’
constraint, or functional relationship, in ORM, EER, and UML, which can
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be extended to a uniqueness constraint over more than one role in an n-ary
relationship in ORM. An External uniqueness constraint is declared over at
least two roles that are part of different relationships, but a role and a rela-
tionship need not participate in an external uniqueness constraint. External
uniqueness exists explicitly in ORM and in part in UML as qualified asso-
ciation (Qualified relationship), and in part in EER for the weak entity type
(see below). UML’s qualified association can be seen in the light of Halpin’s
reconstruction of it in ORM, for which an external uniqueness constraint suf-
fices [12]. Figure 10 shows an example of such a reconstruction. UML allows
for more flexibility on qualified relationships, including 0 so that it is not an
identifier anymore [10]. Hence, it is not an equivalence between any UML
qualified association and ORM external uniqueness, but may depend on the
case. Last, a role may participate in more than one uniqueness constraint.

Bank
accountNr <o.
1.2 -
usqs { Account )
0..2 <2- Number |

has - =
PrivateClient = -

PrivateClient (clientNo)

Figure 10: Example of UML’s qualified association and a semantic equivalence in ORM?2
notation with an external uniqueness that is also chosen as primary reference scheme (the
“=” in the circle, not a “-”) (Adapted from [12], p. 369).

Example 6. Casting the elements of Figure 1 in terms of the metamodel
introduced so far, there are both Mandatory constraints and Uniqueness con-
straints. In the EER diagram, among others, there is both a Mandatory and
a Uniqueness constraint of Morphology in Morphlnfo, making an ‘exactly 1’
(two short lines). In the UML Class Diagram, Morphological SyntaxInfo has
a mandatory (1..*) participation in the association with isiZuluTerm, and
isiZuluTerm has an object type cardinality of exactly 1 in belongs to, hence,
also a Uniqueness constraint. There are no External Uniqueness, Disjunctive
mandatory, and Inclusive mandatory constraints in the models.

3.4.2. Identifiers
Identity and identification in CDM languages has been investigated from
an ontological perspective recently [56], which goes beyond the mere case of
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combining a mandatory and a uniqueness constraint for non-simple identi-
fiers.

There are several identifiers, which differ to some extent across EER and
ORM even when attribute vs. value type is accounted for (recall Section 3.3).
The UML 2.4.1 standard has an {id} option for a single-attribute identifier
([10], p. 130) and a proposed extension in OMG’s Ontology Definition Meta-
model to flexibly approximate the idea of ER’s weak entity type with an
<identifier> ([69], pp. 291-292). Figure 11 depicts the unified view of the
main entities and their relations. The main distinction is between ‘inter-
nal’ and ‘external’ identification constraints is that the constraint involves
either the relevant object type only or it needs a relation external to the
object type for identification. The internal identification serves the single
and multi-attribute/compound identifiers within an entity type in ER and
EER?, of which Single identification is a specialization. Single identification
corresponds to ER/EER’s single attribute identifier, to ORM/ORM2’s sim-
ple reference mode with a single value type, and UML’s {id} construct, and
it has a mandatory 1:1 constraint. The more general Internal identification
also covers composite identification for a single object type, which is, strictly
speaking, absent in ORM. It can be modeled in ORM in a roundabout way,
though: an n-ary fact type with at most n-1 lexical or otherwise unconnected
nonlexical object types participating, and one nonlexical object type, with
a uniqueness constraint on n or n-1 roles and those roles that participate in
the uniqueness constraint are also mandatory.

Logically, the {xor} between Attribute and Value type is redundant, be-
cause it is already declared for their respective parents Attributive property
and Value property, but we have nevertheless included it in the diagram for
purposes of clarity. Further, as a result of the associations drawn and their
applicable constraints on it, the model allows multi-attribute identifiers that
involve simple attributes, as well as composite, dimensional, and multi-valued
attributes, as is allowed in ER/EER.

External identification is relevant in all three families of languages: for
ER and EER’s weak entity type, for ORM’s compound reference scheme that
involves more than one fact type, and for UML’s qualified association that
can have its own identifier using one or more attributes of the qualifier.

2Sometimes also ‘key’ is used, although strictly speaking, keys are a feature of the
relational model, not the conceptual model.
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{ A Weak identification is a combination of one or more Attributive property of the Weak object type it identifies
together with the Identification constraint of the Object type it has a Relationship with
and this Object type is disjoint with the Weak object type. }

{ The Single identification has a Mandatory constraint on the participating Role and the Relationship that
Role is contained in has a 1:1 Cardinality constraint declared on it. }

{ Qualified identification and External identification are declared on only Attributive property. }

{ A Qualified relationship participates in a Qualified identification only if the Cardinality constraint is 1. }

Figure 11: Partial representation of identification constraints (see text for details).

The principal ontological issues and a formalization are discussed in [56]. A
Weak object type has an identifying external uniqueness in which at least
one relationship participates and one or more attributes of the object type
itself. ORM has the same notion with the compound reference scheme in
which object and/or value types from at least two relationships participate,
but, thus far, this has not resulted in the object type having been given a
specific name. This is principally because the compound reference scheme
is a straightforward generalization of ORM’s simple reference scheme (Single
identification), hence, no particular or clear, crisp, notion of ‘weakness’ or
‘dependency’ is considered. Regarding ER’s weak entity types [55, 70], this
is almost the same as ORM’s compound reference scheme, including the
mandatory participation, but with the difference primarily caused by the
difference between data types and value types. That is, instead of being
agnostic about the range of the identifying relationship, as in ORM, it has
to be specified that at least one of them must be a relationship.

Example 7. Casting the elements of Figure 1 in terms of the metamodel
introduced so far, there are two instances of Single Identifier in the EER
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Diagram, being ID and Name. The UML Class Diagram has no identifiers.
There is no External identification.

3.4.3. Multiplicity, Cardinality, and Frequency

Cardinality constraints on attributive properties can be declared for both
relationships and object types (see Figure 12). Figure 4 captures the car-
dinality for value types with the cardinality on the role and a participating
Entity type, which is one option of ORM’s more generic frequency constraint
that can apply to any role regardless whether it is a role played by a value
type (Value property) or an entity type (Object type). The latter is captured
in the metamodel with the Object type cardinality constraint.

«| participates in

Cardinality constraint
MinimumCardinality:Integer
MaximumCardinality:Integer

0,2.*

== Role
participates

appliesyy . In
Relationship PP o |1
AN | Compound cardinality constraint |
Attributive .
Obiject type
property 0.7 has ) P

attribute

{ If there is a Cardinality constraint,
then it must include a MinimumCardinality or MaximumCardinality or both. }

{ Each Compound cardinality constraint must include a MinimumCardinality or MaximumCardinality or both. }
{ For each Compound cardinality constraint over 2 or more Roles,
those Roles must be contained in the same Relationship and are distinct. }

Figure 12: Cardinality constraints on attributes of object types and relationships, and
compound cardinality over more than one role in a relationship.

The third type of cardinality is the Compound cardinality constraint, which
is a constraint on more than one role in a single relationship, which exists
in ORM also as a frequency constraint (see Figure 12). For each Compound
cardinality constraint, at least two roles of one relationship have to participate
in it, but a role and relationship do not have to participate in a compound
cardinality constraint.

There are finer details regarding the differences between cardinality in
EER and ORM and multiplicity in UML. The former separate optionality
from the amount of times an entity participates in a relationship. This can be
observed in the diagrams with, among others, black vs. white blobs, orthog-
onal line vs. white blob, solid vs. dashed line, or purple blob vs no icon to
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distinguish between mandatory vs optional, respectively, and with so-called
single line vs ‘craws’ feet’ for 1 and many. Multiplicity takes them together
into one notion through the specification of the multiplicity constraint with
its minimumCardinality set to 0 if it is optional and set to 1 (or 1..* etc.) if it is
mandatory. As such, multiplicity has the Mandatory constraint (see Figure 8)
and the cardinality constraints from Figure 12 merged.

Example 8. Casting the elements of Figure 1 in terms of the metamodel
introduced so far, all relationships have Object type cardinality constraints,
extending those mentioned in Example 6. In the EER diagram, among oth-
ers, there is an ‘exactly one’ cardinality of Morphology in Morphlnfo, and
an optional m..n for the relationship antonym. In the UML Class Diagram,
isiZuluTerm an has an object type cardinality of exactly 1 in belongs to, and
0..* for Affix’s participation. There is no Compound cardinality constraint. <

3.4.4. Value Constraints

Role value constraint is redundant in the sense that it can be modeled
differently by using subtyping: the relationship is instantiated only when the
object has a certain value, which is equivalent to constraining a property,
which means it is a subtype. However, the language has a dedicated feature
icon for it, and therefore it is included in our metamodel; see Figure 13.

ORM and ORM2 have additional features regarding constraints on value
types, which are absent from EER and available in UML for its attributes.
The values of a value type can be constrained by means of minimum and
maximum values and by means of an enumeration of values; e.g. >18, <65,
and {'"M’, 'F'}, respectively. Figure 13 summarizes this. UML has the notion
of a “value specification” (see Figure 7.5 in [10]) with only optional upper and
lower values, yet its Figure 7.13 also has enumeration of values. Hence, one
can argue to extend the Attributive property with a similar constraint, which
is included in Figure 13 on the right-hand side of the figure. ORM and ORM2
also have a Value comparison constraint by using a value comparison operator;
see Figure 14.

Example 9. Casting the elements of Figure 1 in terms of the metamodel

introduced so far, there are no Value comparison constraints and no Role value
constraints in the EER diagram and UML Class Diagram. <
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Figure 13: Value type, role, and attribute value constraints.
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{ A Value comparison constraint cannot have as participant the same Role. }
{ The values subjected to a comparison operator in a Value comparison constraint
must involve values of the same Data type. }

Figure 14: Value comparison constraint; the roles have to be compatible.
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3.4.5. Disjointness and Completeness Constraints
The role and relationship constraints of UML, EER, and ORM2 differ
mainly on the relational properties and the derived constraints of joins, and
are similar regarding equality constraints (see Figure 15, top) and disjointness
constraints (Figure 15). Both parts of the metamodel also include complete-
ness for object types, but note that disjointness is represented over two or
more subtype relations, not among the object types themselves. In addi-
tion, disjointness for relationships and entity types entails that its subtypes
may also be involved, i.e., disjoint value properties and disjoint attributive
properties, even though there is no graphical support for it at present. The



reason that it is permitted according to the metamodel is because they are
by default disjoint; hence, this addition makes implicit constraints explicit.
Finally, disjointness is not just asserted between ‘compatibles’, but they have
to be the same kind of entity for it to make sense with respect to the informa-
tion that is represented. That is, asserting a disjointness constraint between
some relationship R and some attribute A or between value type Vi and
dimensional value type V, is uninteresting in the former case and already
entailed in the latter.

Relationship .
equality Role equality
0..* 0.”
declared declared
on 2.” on 2.”

Relationship Role Object type Subsumption Object type
declared| o * declared| 2..* has| 2.*  geclared declared has| 2..*
on on participant on 11 on partici-|

0.* 0.” 0.* pant| 0..*
Disjoint L Disjoint N N Completeness
relationships Disjoint roles object types 0- 0. constraint

{ For each Disjoint object types that is declared on two or more Object types,
these Object types share a direct common subsumer. }

{ For each Completeness constraint that is declared on two or more Object types,
these Object types share a direct common subsumer. }

{ Compatible Object types are Object types that are of the same category. }

{ Compatible Roles are Roles that are linked to compatible Entity types
and those Entity types are either the same or one is a sub of the other. }

{ Compatible Relationships are Relationships that have the same number of Roles
participating in the sub and super position and those Roles are compatible. }

{ Each Disjoint object types is declared on compatible Object types. }

{ Each Disjoint relationships is declared on compatible Relationships. }

{ Each Disjoint roles is declared on compatible Roles
and those Roles are contained in distinct Relationships. }

{ Each Role equality is declared on compatible Roles
and those Roles are contained in distinct Relationships. }

{ Each Relationship equality is declared on compatible Relationships. }

Figure 15: Disjointness and completeness constraints, and role and relationship equality.

Example 10. Casting the elements of Figure 1 in terms of the metamodel
introduced so far, there are no Disjointness constraints and no Completeness
constraints in the EER diagram and UML Class Diagram (while prefix and
suffix are conceptually distinct, their instances may not be). <

3.4.6. Relationship Constraints

EER does not have specific relational properties and they are ambiguous
for UML Class Diagrams due to the underspecified semantics of the aggre-
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gation association. There are multiple properties for ORM and even more in
ORM2. In this family, relational properties are asserted over two roles at a
time, the arity of the relationship may be > 2, the roles have to be compat-
ible, for some properties they have to be in a particular order, and the roles
that are involved in the relational property constraint have to be contained in
the same relationship. Overall, ORM2 has 11 different relational properties,
which have been structured in a small taxonomy (recall Figure 3). For pur-
poses of clarity, we include the definitions below, where the purely reflexive
and strong intransitive [71] are relatively new (definitions taken from [71],
unless mentioned otherwise):

- transitive: Va,y, 2(R(z,y) A R(y, z) = R(x, 2));

- intransitive: Vz,y, z(R(x,y) A R(y, z) — —R(x, 2));

- strongly intransitive: Va,y, z((R(z,y) A P(y,z) — —R(x,z) and “P is
recursively defined to give the transitive closure of R, i.e., Va,y(P(z,y) <
(R(z,y)V 3z(R(x,z) AN P(z,9))))” [71] so as to prohibit ‘jumping’ over
one or more classes in the hierarchy;

- locally reflexive: Vz,y(R(x,y) — R(x,z)), which requires a y to be
there before x relates to itself through R;

- globally reflexive: Yz R(z, x);

- purely reflexive: Vz,y(R(z,y) = = =y)

- irreflexive: Vo—R(z, x);

- asymmetric: Vo, y(R(z,y) — - R(y, x));

- symmetric: Vz,y(R(z,y) — R(y,z));

- antisymmetric: Vz, y(R(z, y)AR(y, ) — x = y), or, asin [12]: Vz,y(—(z =
y) A R(z,y) = ~R(y, 2));

- acyclic: R is acyclic iff Vz—(x has path to x) [12].

Including all these constraints likely also covers those that may be perceived
to be relevant for UML’s aggregation association. Further, as already men-
tioned and shown in [12, 71], one constraint can imply another (an acyclic
relationship is also asymmetric), some can be used together (symmetric and
transitive), and yet others are excluded (e.g. declaring a relationship to be
both symmetric and asymmetric). These are usage combinations, which do
not need to be included in the metamodel.

Example 11. Casting the elements of Figure 1 in terms of the metamodel

introduced so far, there are no Relationship constraints in the EER diagram
and UML Class Diagram, as neither has them in the language. {
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participant
0.4 {union} ,

Relationship first 1
constraint {subset participant}

Role

| second | 1
{subset participant}

{ Each Relationship constraint is declared on compatible Roles
and those Roles are contained in the same Relationship. }

Figure 16: Relationship constraints (see Figure 3 for the hierarchy of relational properties).

3.4.7. Join Constraints

Finally, there are join constraints over roles in different relationships, as
depicted in Figure 17, which can be reduced to query containment. Never-
theless, they have dedicated icons in ORM, and therefore they are included
in the metamodel.

0.* Join 0."
participates in constraint participates in
3.4 4
Relationship 0. Role

{ The Relationships that participate in a Join constraint contain the Roles that participate in that Join constraint. }
{ Roles and Relationships may participate in more than one Join constraint
only if the combination of participating Relationships and Roles is unique. }

Figure 17: Join constraints.

Example 12. Casting the elements of Figure 1 in terms of the metamodel
introduced so far, there are no Join constraints in the EER diagram and UML
Class Diagram, as neither has them in the language. {

4. Use Cases of the Metamodel

To demonstrate usefulness of the metamodel beyond just having it for pur-
poses of insight into the features of the three language families, we present
here two of the many possible usages, being a quantitative case and the
other a qualitative one. The first example focuses on classifying entities of
30 conceptual models into metamodel entities, which is a necessary step for
automated inter-model assertions. The second case presents a detailed anal-
ysis of candidate inter-model assertions between entities from Example 1’s
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EER model and UML Class Diagram that were used in Section 3 as running
example for classifying entities.

4.1. Entities in Terms of the Metamodel

For any implementation supporting inter-model assertions, one needs to
be able to classify the entities of a conceptual model into the entities of the
metamodel, which presupposes that a given model also adheres to the syn-
tax and semantics of that modeling language. The latter prerequisite is a
separate issue and not addressed here, though it can be facilitated by the for-
malized metamodel. Further, it is useful to gain insight into the prevalence
of entities, which can inform which mapping rules should be designed and
implemented first so as to cover most of the possible inter-model assertions
or transformations. To this end, we collected and analyzed a set of models,
aiming to answer the following questions: (1) what is in a set of random
models now? (2) does the metamodel miss elements, and if so, which? and
(3) how uncommon are the uncommon features?

4.1.1. Materials and methods

For this exploratory evaluation, we collected 30 models: 10 UML models
from the GenMyModel repository®, 10 ORM/ORM2 models, including three
from the authors, several from ORM papers, and several diagrams that were
sourced online via a Google image search, and 10 ER/EER models, including
one from one of the authors and three or more from textbooks and study ma-
terial from online sources. The models cover different universes of discourse,
such as sports, library, video rental, airline reservation, ontology repository,
a BPMN metamodel, and so on. Each model was analyzed and the entities
present were manually enumerated and tabulated in a spreadsheet (MS Ex-
cel). To lessen the burden of counting disaggregated cardinality constraints
(such as basic uniqueness and mandatory in ORM), we counted them to-
gether, and likewise an aggregation of ORM’s ring constraints. The data
analysis consisted mainly of the calculation of the average and median for
the subtotals per model family, the aggregated for the total of 30 models,
the percentage of presence of that feature among the models in the family
and aggregated, and against the overlap in model entities (the color-coded
classes in Figures 2 and 3).

31t is located at https://repository.genmymodel.com/public/0.
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4.1.2. Results and discussion

All models and the spreadsheet with the raw data and analysis are avail-
able as supplementary material online at http://www.meteck.org/files/
DKEl4data.zip. 29 figures were syntactically correct, although possibly in-
complete. The model named £fig8.7 in the dataset has a syntactic error:
there is a multivalued attribute that also is a compound attribute, which
ought not be the permissible.

One salient observation is that all UML diagrams had only names for as-
sociation ends (Role) but not named associations (Relationship). In contrast,
most ER/EER diagrams had only names for the relationships, whereas the
variation in the ORM diagrams can be traced back to modeler and tool, and
the decision that fact type (Relationship) readings are not taken also as role
names unless the tool takes this stance. More than half of the UML mod-
els had a PartWhole relationship (aggregation) constituting 23% of the total
amount of Relationships in UML models. More than half of the full set of mod-
els had one or more Subsumption on Object types, although the aggregated
median is only 1.5 per model. Single identification is used most in ER/EER
and ORM, then Weak identification and External identification (40% of the
models), and only 2 of the 10 ER/EER models had an Internal identification
consisting of more than one attribute; no UML diagram had an ldentification
constraint. There was a relatively high presence of Value type constraints (60%
of the ORM models, 1.8 per model), Nested object types (50% and median of
0.5 per model), and relationship attributes in EER (90% with a median of
3 per model). Attributes and Value types are present in abundance, with 2.4
attributes per class in the UML diagrams and 3.4 attributes per entity type
in ER/EER; this was only 0.7 for ORM (mainly due to two outlier models).

Regarding uncommon entities, it is noteworthy that there was only one
Compound cardinality constraint (frequency over more than one role in ORM),
and one Relationship equality, Disjoint role, Disjoint relationship, Join-subset
constraint, and Join-equality constraint in any ORM diagram. Relationship
constraints were also seldom observed in the ORM diagrams (10 in 4 dia-
grams). Noteworthy is that there was no Subsumption of relationships in
EER and only two in ORM, there were no Disjoint object type or a Complete-
ness constraint in UML, and few Attributive property cardinality assertions in
UML (9) and EER (1) compared to Object type cardinality on roles (741), and
no Qualified relationships in the set of UML diagrams.

It cannot be excluded that some models ‘miss’ interesting features be-
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cause the modeling tool to draw the diagram does not allow it; for instance
the tool with which the model ORMmultiVerbRunnigExamomeDOGMAall was
made (DOGMA) allows only binary ORM fact types and no value types.
Similarly, some textbooks feature associative entity types [72] whereas oth-
ers [73] do not (at least the model with file name fig7.2 is from [73] and
modernDBmgmt 10thedPVC and modernDBmgmt10thedSWvendor are from [72]).
Such in-depth knowledge is not available for all models, however. Also open
to speculation and further investigation is the observation that of the 2908
entities classified, 1613 come from the set of ORM diagrams, 559 from the
UML diagrams, and 778 from the ER/EER diagrams.

Five models had (partially) derived attributes and one had a dependency
association, which are not covered in the metamodel. T'wo stereotypes have
been used, which are beyond the scope of the metamodel, and likewise a
realization association. Another aspect is textual constraints, which possibly
could be used in some form with inter-model assertions if the other model is
expressive enough, but this requires NLP for various natural languages, which
is outside our scope for the time being. One UML model had structured
several classes in two packages, which do not affect any inter-model assertions
either, nor do the explanatory model notes.

That said, one may wonder how feasible it is to achieve full model trans-
formation or possibly linking each element. Of the 2908 entities (including
constraints) of the 30 models, 1891 were classified into metamodel entities
that appear in all three language families (the black shaded classes in Fig-
ures 2 and 3), 515 were classified into entities that appear in two of the three
families (dark grey-filled classes), and 502 were classified in entities that ap-
pear in only one of the three language families (light grey). Put differently,
only about 65% will have a relatively straightforward mapping rule, and the
rest will have to be achieved by transformation or approximation rules, where
possible, or is unmappable.

4.1.3. Final remarks

Although the sample size is quite small for drawing hard conclusions, it
does show that any automated classification of entities into the metamodel
based on an arbitrary set of models will be a non-trivial exercise. This is
due to the lack of available serialized diagrams (unlike the undisclosed ORM
set of [74]), an extant model repository, and that it is difficult to figure
out with which tool a model was made and which features it supported at
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suffix UML class diagram )

Figure 18: Example of an attempt to integrate the two diagrams of the running example;
see text for details.

the time of creation of the model. The results show that our metamodel
does have sufficient coverage and can help give insight into characteristics of
extant models. Thus, they are promising results and likely to be worth the
effort when scaled-up, both regarding interoperability and gaining a better
understanding of which features are being used and why.

4.2. Linking Models

Let us revisit the problem described in Example 1 from Section 1, con-
cerning two conceptual models in EER and UML for an isiZulu termbank.
The isiZulu termbank needs a similar structure to the generic termbank for
interoperability, but also store data specific to the isiZulu language and have
the capability to compute terms in the application layer [15]. Figure 18 shows
six seemingly obvious links between the entities in the two models, which will
be assessed in the remainder of this section.

The asserted subsumption between Term and isiZuluTerm is rather obvi-
ous, but the mapping between UML’s name:String and EER’s Name identifier
complicates this: UML’s name:String does not guarantee uniqueness of the
term, thus one cannot simply add the subsumption. It would have been pos-
sible to do so without any chance of having dirty data if the UML diagram
were to have had name:String{id}.

The EER-Grammatical Number and UML-grammNr:String agree on both

35



being a real attribute, assuming that the EER-Grammatical Number is as-
signed a data type of String in the physical design stage, and likewise for
the EER-Stem and UML-stem:String.

The Morphlnfo relationship and hasMorphlnfo association (name not shown
in diagram) mean the same as well, but their cardinalities differ. If this were
an interface to an automated reasoner-enabled modeling tool, such as Icom
[18], then instead of equivalence it would infer that the hasMorphinfo associ-
ation is a sub-relationship of the Morphlnfo relationship, and reduce the 1..*
to 1..1. As with name:String, any data that was already in the system would
have to be double-checked on whether it is actually 1..1. Another option is
to discard the deduction and change the cardinalities in the EER diagram.

Information about affixes in both models cannot be found automatically
based on syntactic comparison and the metamodel alone, as the EER-Affix
is an attribute and the UML-Affix is a class (object type in the metamodel),
which are disjoint. It would be possible to find the correspondence based on
string matching—a quite common approach in ontology alignment [75]—and
it may useful to devise ‘kind conversions’, mainly between Attributive property
and Object type and between Object type and Relationship.

5. Discussion

Opposite assumptions exist about the various CDM languages, ranging
from being practically ‘pretty much interchangeable’ to ‘fundamentally very
different’. To in vestige this in detail, we took the approach of aiming to in-
clude all static structural elements of the three main CDM languages, rather
than a quicker to implement subset, and taking an ontological approach to
metamodel development rather than a logic-based one trying to fit it all into
one a priori chosen logic (see also Section 2.3). What the resultant unifying
metamodel clearly demonstrates is that, in the fine details, little is the same
across the languages. Yet, at the more general level of principal ontological
distinctions, they are quite alike in ontological commitment regarding en-
tities. The integrated overview of the entities and constraints in Figures 2
and 3 provides a basic overview of overlaps, which is refined in the Appendix
as to where exactly the overlap is for the classes filled with a dark grey.
The amount of ‘glue’ entities that are in the hierarchy of entities but not in
the languages in the two figures (the white-filled classes) are non-negligible
compared to the entities in the languages. Six out of the 23 classes for the
entities and 10 out of 49 for the constraints are principally used for grouping
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similar constraints together and thus will serve well for rules for checking
inter-model assertions and model transformations.

The reader may have noted that there are a few redundancies in the
metamodel, such as multivalued attributes that can be represented by means
of plain attributes, but the aim was to be complete with respect to the
graphical features in the CDM languages and not to judge whether it can be
represented more elegantly (this is addressed in the formalization). The fact
is that the features are available in the graphical languages, hence, a unifying
model and, moreover, any tools for linking and transforming CDMs, will have
to be capable of handling such entities and constraints.

5.1. Metamodel Design Considerations

We made several design decisions during the development of the meta-
model, which have to do with the approach and representation language and
with Ontology and ontologies. We reflect on these now.

5.1.1. Its Representation Language

There are limitations on what can be represented in UML Class Diagrams,
and we had to include some textual constraints that are not possible to
express in plain UML Class Diagram notation. In addition, UML does not
have a standardized formalization. However, we preferred a more widely
understood graphical notation for reasons of broader communication and
human readability and understandability compared to a richer language, such
as ORM. In addition, we have formalized the metamodel in a suitable logic
anyway [50]. This FOL version of the metamodel also provides the basis
for a systematic analysis of transformation rules from/to the metamodel and
within-metamodel conversions to generate and check the validity of inter-
model assertions. For instance, relating a relationship induces the checking
of its roles, of the object types that participate in it, and their identifiers, due
to the chain of mandatory participations in the metamodel. The metamodel
includes even more structural constraints than some formalizations of the
CDM languages, for example OMG’s UML infrastructure. This would allow
one to realize more comprehensive checks on both intra-model and inter-
model assertions.

5.1.2. Ontology-driven Metamodeling
Concerning the modeling of the metamodel itself, the quality has im-
proved both by using the automated reasoner (data not included) and by
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(but a Relationship that contains Roles need not have a Predicate,
and Roles need not be ordered for a Predicate) }

Entity type

Figure 19: Relationships between these entities and Predicate, for explanatory purpose;
see text for details.

being guided by insights obtained from Ontology and ontologies, most no-
tably regarding the nature of Object type, Relationship and Role with the
positionalist commitment, and Attributive property regarding the more pre-
cise characterization and constraints. One aspect deferred from Section 3.2,
is the interaction of predicates with relationships and roles. Some of the
ORM references [12, 54] add predicates as another way to handle its fact
types, and many logic languages use the predicate-based approach, not roles.
However, predicates do not appear in ORM’s graphical icons, and therefore
it is not included in the metamodel. Nevertheless, it is useful to address this
briefly, which also contributes to understanding the positionalist commit-
ment of the CDM languages. A relationship is composed of an unordered set
of roles that participating objects play, compared to predicates that have the
participating objects ordered in a fixed sequence. Predicate in the context of
CDM Relationship, would have to be at least binary, whereas in logic, pred-
icates can be unary. If unary, then they are, ontologically, a different kind
of thing and order in a unary predicate does not make sense. In addition, it
is not clear how to relate Relationship and Predicate. The draft ORM/FBM
ISO standard depicts Predicate with a composite aggregation to Fact type
(relationship) [54], but this is incorrect, because relationship and predicate
each exemplify a different ontological commitment. Predicate exemplifies the
so-called “standard view” and CDM’s relationship the “positionalism” that
requires the existence of roles [58]. Moreover, each permutation of an order-
ing among participating objects without the use of roles (i.e., in a predicate)
is therewith not ‘part’ of a single unordered composition of roles, and the
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predicates do not ‘constitute’ the relationship (roles do). It cannot be sub-
sumption either, as some thing without roles cannot be always a thing with
roles. Therefore, it may be modeled as a plain association, where a predicate
is one of the possible orderings of the entities that play the roles in that rela-
tionship; see Figure 19 for indicative purpose. Note that Role is not ordered
in a, but for a, Predicate, because the roles are ordered and then ‘removed’ to
obtain a predicate. Alternatively, and ontologically more accurately, one can
decide that roles have nothing to do with predicates so that it is only Entity
type that participates in zero or more Predicates. While the idea is intuitively
clear, ontologically, the interaction deserves refinement, but this is outside
the scope of the metamodel.

5.2. Discussion of the Use Cases

Automated classification of entities has be shown to work when the model
is made with a single toolset [74], but tool heterogeneity in their serializa-
tion as well as making such serializations available to the public is a hurdle
to be overcome. The results of the manual effort described in Section 4.1
do demonstrate, however, that such efforts can be worthwhile in increasing
understanding of publicly available conceptual models.

The qualitative use case also showed usefulness of the metamodel in an-
alyzing and validating inter-model assertions across CDM languages. Cur-
rently, there is no tool support for it, but foundations have been laid both
at the implementation level and now also at the theoretical level. On the
one hand, ICom already allows for inter-model assertions and reasoning over
them (albeit models in one language only, not two, as in Section 4.2) [18].
On the other hand, the formalization of this metamodel may be used for
computing the mappings and transformation, as described in [76]. That is,
the prospects are realistic now.

6. Conclusions

The main contribution of this paper is the new ontology-driven unifying
metamodel of all static, structural entities, their relationships, and the con-
straints of the three most used families of CDM languages, being ORM /FBM,
EER, and UML Class Diagrams (v2.4.1). From the feature analysis it follows
that there is only a relatively small intersection of features. For entities, they
are: relationship, role, object type, and the subsumption relationship. The
languages agree also on the ontological commitments regarding object types
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and, notably, the positionalist commitment as to the nature of relationships
with roles. Further, while the languages agree on the inclusion of attribu-
tive properties, the actual language features to represent them differ, and
the largely implicit notion of the dimension of an attribute or value type has
been made explicit. For constraints, the common features include: disjoint
roles, disjoint entity types, completeness constraint, mandatory, object-type
cardinality, single identification, and the subset constraint. The metamodel
fragment for constraints is fairly straightforward, except for identification
constraints and qualified associations with qualifiers, the latter principally
because it is ambiguous in the UML standard.

The use-cases showed where and how the metamodel can be deployed,
thereby gaining insight in the use of model entities as well as ensuring pre-
cision in mapping, based on 30 conceptual models and the assertion of links
between an EER and a UML diagram as examples.

We have completed the formalization of the metamodel [50] and have
commenced with the characterization of transformation and mapping rules
[76]. The unifying metamodel and its formalization will help in the compre-
hension of differences between heterogeneous conceptual models and in the
development of tools that will aid in information integration and software
interoperability that uses conceptual data models.
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Appendix

Terminology comparison and conventions of the entities in UML Class
Diagrams, EER, and ORM/FBM (for indicative purposes).

Table 1: Terminology comparison between CDM languages.

Composite
attribute

more general: a prop-
erty can be a compos-
ite of another prop-
erty (and an attribute
is a property)

composite attribute

metamodel UML Class EER ORM/FBM
term Diagram v.2.4.1
Core entities
Relationship association, can be | relationship, >2-ary atomic/compound
2-ary according to fact type, >1-ary
the MOF 2.4.1, but
also >2-ary according
to the Superstructure
Spec 2.4.1
Role association end / | component of a rela- | role
member end tionship
Entity type classifier ABSENT object type
Object type class entity type nonlexical object
type/entity type
Attributive properties
Attribute attribute attribute, but with- | ABSENT(represented
out including a data | differently)
type in the diagram
Dimensional at- | ABSENT(no recording | ABSENT ABSENT(represented
tribute of dimension) differently)

implicitly present by
adding new roles

Continued on next page
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Table 1 — continued from previous page

metamodel UML Class EER ORM/FBM
term Diagram v.2.4.1

Multivalued at- | ABSENT(represented | multivalued attribute | ABSENT(represented

tribute differently) differently)

Value type ABSENT ABSENT lexical object
type/value type,
without dimension

Dimensional ABSENT ABSENT lexical object

value type type/value type,
with dimension

Data type LiteralSpecification ABSENT data type

(there are only six,
see Fig 7.6 in the
UML Superstructure
v2.4.1)
Special object types

Nested object | association class ABSENT objectified fact type

type

Weak object | ABSENT weak entity type ABSENT

type

Associative ob- | ABSENT associative entity | ABSENT

ject type type

Special relationships

Qualified  rela- | qualified association ABSENT ABSENT

tionship

Composite composite aggrega- | ABSENT ABSENT

aggregate tion

Shared aggre- | shared aggregation ABSENT ABSENT

gate

Subsumptions
Object subtype subclass subtype subtype

Sub-relationship

subsetting or subtyp-
ing of association

subtyping the rela-
tionship (not present
in all EER variants)

subset constraint on
fact type

Mandatory constraints

Mandatory
Disjunctive
mandatory

mandatory role
implicitly present
(e.g., as an {or}, see
pp. 58-59 of [10])

mandatory
ABSENT

mandatory
disjunctive
mandatory /inclusive-
or on roles

Continued on next page
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Table 1 — continued from previous page

metamodel UML Class EER ORM/FBM
term Diagram v.2.4.1
Inclusive implicitly present | AND for relation- | ABSENT as such (but
mandatory (e.g., as an {and}, | ships can be approximated

see pp. 58-59 of [10])

with a join-equality)

Identification and

uniqueness constra

ints

Internal identifi-
cation

Single identifica-
tion
External identi-
fication

Qualified identi-
fication

Weak identifica-
tion

Uniqueness con-
straint

Internal unique-
ness

External unique-
ness

alt key mechanism,
for one class

alt key mechanism (in
[69], not in v2.4.1)
made mandatory 1:1

an (extended) alt key
mechanism [69], see
also a refinement in
[56]

qualified association

ABSENT
ABSENT

ABSENT

exists in part, with
the qualified associa-
tion

compound identifier,
for attributes within
entity type

unary identifier
(mandatory 1:1)
needed for weak en-
tity type

ABSENT

weak identifier

ABSENT

exists in part, where

the participants
are all attributes
(see also EER’s

compound identifier)

exists in part, where
the participants are
all attributes

ABSENT

(simple) reference
mode (mandatory
1:1)

compound reference
scheme

(limited version of)
external uniqueness
(limited version of)
external uniqueness
uniqueness constraint

internal  uniqueness
constraint where the
participating roles
can be roles of either
Object types or Value
types

external uniqueness
constraint where the
participating roles
can be roles of either
Object types or Value
types

Continued on next page
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Table 1 — continued from previous page

metamodel UML Class EER ORM/FBM
term Diagram v.2.4.1
Cardinality and frequency constraints
Attributive multiplicity on at- | cardinality on at- | ABSENT(add  cardi-
property cardi- | tribute tribute nality to the fact
nality constraint type with a lexical
object type)
Object type | multiplicity con- | cardinality con- | frequency constraint
cardinality straint, with mini- | straint, with min- | (object cardinality)
constraint mum and/or maxi- | imum cardinality | constraint on one
mum and/or maximum | role, with minimum
cardinality cardinality ~ and/or
maximum cardinality
Compound ABSENT ABSENT frequency constraints
cardinality con- in one fact type over
straint (in one more than one role
relationship,
involving > 1
role)
Value constraints
Value compari- | ABSENT ABSENT value comparison
son constraint constraint
Value type con- | value specification ABSENT value constraint
straint
Role value con- | ABSENT ABSENT role value constraint
straint
Attribute value | attribute value con- | ABSENT ABSENT
constraint straint
Subsumption constraints
Disjoint  entity | disjoint disjoint exclusive subtypes
types
Completeness complete total total (exhaustive)
constraint covering subtypes
Set-comparison constraints
Role subset | subsetting of associa- | ABSENT subset constraint on
(inherited from | tion ends role
the subsump-

tion on Entity)

Continued on next page
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Table 1 — concluded from previous page

metamodel term | UML Class Diagram v.2.4.1 EER ORM/FBM
term Diagram v.2.4.1

Disjoint roles {xor} XOR exclusion (on roles)

Role equality ABSENT ABSENT equality (on roles)

Disjoint rela- | ABSENT ABSENT exclusion (on fact

tionships types)

Relationship ABSENT ABSENT equality  (on  fact

equality types)

Join-subset con- | ABSENT ABSENT join-subset constraint

straint among four roles in
three or four relation-
ships

Join-disjointness | ABSENT ABSENT join-exclusion among

constraint four roles in three or
four relationships

Join-equality ABSENT ABSENT join-equality among

constraint four roles in three or
four relationships

Relationship ABSENT ABSENT for the full list of

constraint supported  relation-

ship constraints, see
[71] and Section 3.4.5
with Figure 3, above.
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