18 research outputs found

    Rifting under steam – how rift magmatism triggers methane venting from sedimentary basins

    Get PDF
    During opening of a new ocean magma intrudes into the surrounding sedimentary basins. Heat provided by the intrusions matures the host rock creating metamorphic aureoles potentially releasing large amounts of hydrocarbons. These hydrocarbons may migrate to the seafloor in hydrothermal vent complexes in sufficient volumes to trigger global warming, e.g. during the Paleocene Eocene Thermal Maximum (PETM). Mound structures at the top of buried hydrothermal vent complexes observed in seismic data off Norway were previously interpreted as mud volcanoes and the amount of released hydrocarbon was estimated based on this interpretation. Here, we present new geophysical and geochemical data from the Gulf of California suggesting that such mound structures could in fact be edifices constructed by the growth of black-smoker type chimneys rather than mud volcanoes. We have evidence for two buried and one active hydrothermal vent system outside the rift axis. The vent releases several hundred degrees Celsius hot fluids containing abundant methane, mid-ocean-ridge-basalt (MORB)-type helium, and precipitating solids up to 300 m high into the water column. Our observations challenge the idea that methane is emitted slowly from rift-related vents. The association of large amounts of methane with hydrothermal fluids that enter the water column at high pressure and temperature provides an efficient mechanism to transport hydrocarbons into the water column and atmosphere, lending support to the hypothesis that rapid climate change such as during the PETM can be triggered by magmatic intrusions into organic-rich sedimentary basins

    Serum anti-GM2 and anti-GalNAc-GD1a IgG antibodies are biomarkers for acute canine polyradiculoneuritis

    Get PDF
    Objectives: A previous single-country pilot study indicated serum anti-GM2 and anti-GA1 anti-glycolipid antibodies as potential biomarkers for acute canine polyradiculoneuritis. This study aims to validate these findings in a large geographically heterogenous cohort. Materials and Methods: Sera from 175 dogs clinically diagnosed with acute canine polyradiculoneuritis, 112 dogs with other peripheral nerve, cranial nerve or neuromuscular disorders and 226 neurologically normal dogs were screened for anti-glycolipid antibodies against 11 common glycolipid targets to determine the immunoglobulin G anti-glycolipid antibodies with the highest combined sensitivity and specificity for acute canine polyradiculoneuritis. Results: Anti-GM2 anti-glycolipid antibodies reached the highest combined sensitivity and specificity (sensitivity: 65.1%, 95% confidence interval 57.6 to 72.2%; specificity: 90.2%, 95% confidence interval 83.1 to 95.0%), followed by anti-GalNAc-GD1a anti-glycolipid antibodies (sensitivity: 61.7%, 95% confidence interval 54.1 to 68.9%; specificity: 89.3%, 95% confidence interval 82.0 to 94.3%) and these anti-glycolipid antibodies were frequently present concomitantly. Anti-GA1 anti-glycolipid antibodies were detected in both acute canine polyradiculoneuritis and control animals. Both for anti-GM2 and anti-GalNAc-GD1a anti-glycolipid antibodies, sex was found a significantly associated factor with a female to male odds ratio of 2.55 (P=0.0096) and 3.00 (P=0.0198), respectively. Anti-GalNAc-GD1a anti-glycolipid antibodies were more commonly observed in dogs unable to walk (odds ratio 4.56; P=0.0076). Clinical Significance: Anti-GM2 and anti-GalNAc-GD1a immunoglobulin G anti-glycolipid antibodies represent serum biomarkers for acute canine polyradiculoneuritis

    Serum anti-GM2 and anti-GalNAc-GD1a IgG antibodies are biomarkers for acute canine polyradiculoneuritis

    Get PDF
    Objectives: A previous single-country pilot study indicated serum anti-GM2 and anti-GA1 anti-glycolipid antibodies as potential biomarkers for acute canine polyradiculoneuritis. This study aims to validate these findings in a large geographically heterogenous cohort. Materials and Methods: Sera from 175 dogs clinically diagnosed with acute canine polyradiculoneuritis, 112 dogs with other peripheral nerve, cranial nerve or neuromuscular disorders and 226 neurologically normal dogs were screened for anti-glycolipid antibodies against 11 common glycolipid targets to determine the immunoglobulin G anti-glycolipid antibodies with the highest combined sensitivity and specificity for acute canine polyradiculoneuritis. Results: Anti-GM2 anti-glycolipid antibodies reached the highest combined sensitivity and specificity (sensitivity: 65.1%, 95% confidence interval 57.6 to 72.2%; specificity: 90.2%, 95% confidence interval 83.1 to 95.0%), followed by anti-GalNAc-GD1a anti-glycolipid antibodies (sensitivity: 61.7%, 95% confidence interval 54.1 to 68.9%; specificity: 89.3%, 95% confidence interval 82.0 to 94.3%) and these anti-glycolipid antibodies were frequently present concomitantly. Anti-GA1 anti-glycolipid antibodies were detected in both acute canine polyradiculoneuritis and control animals. Both for anti-GM2 and anti-GalNAc-GD1a anti-glycolipid antibodies, sex was found a significantly associated factor with a female to male odds ratio of 2.55 (P=0.0096) and 3.00 (P=0.0198), respectively. Anti-GalNAc-GD1a anti-glycolipid antibodies were more commonly observed in dogs unable to walk (odds ratio 4.56; P=0.0076). Clinical Significance: Anti-GM2 and anti-GalNAc-GD1a immunoglobulin G anti-glycolipid antibodies represent serum biomarkers for acute canine polyradiculoneuritis

    Serum anti-GM2 and anti-GalNAc-GD1a IgG antibodies are biomarkers for acute canine polyradiculoneuritis

    Get PDF
    OBJECTIVES: A previous single-country pilot study indicated serum anti-GM2 and anti-GA1 anti-glycolipid antibodies as potential biomarkers for acute canine polyradiculoneuritis. This study aims to validate these findings in a large geographically heterogenous cohort. MATERIALS AND METHODS: Sera from 175 dogs clinically diagnosed with acute canine polyradiculoneuritis, 112 dogs with other peripheral nerve, cranial nerve or neuromuscular disorders and 226 neurologically normal dogs were screened for anti-glycolipid antibodies against 11 common glycolipid targets to determine the immunoglobulin G anti-glycolipid antibodies with the highest combined sensitivity and specificity for acute canine polyradiculoneuritis. RESULTS: Anti-GM2 anti-glycolipid antibodies reached the highest combined sensitivity and specificity (sensitivity: 65.1%, 95% confidence interval 57.6 to 72.2%; specificity: 90.2%, 95% confidence interval 83.1 to 95.0%), followed by anti-GalNAc-GD1a anti-glycolipid antibodies (sensitivity: 61.7%, 95% confidence interval 54.1 to 68.9%; specificity: 89.3%, 95% confidence interval 82.0 to 94.3%) and these anti-glycolipid antibodies were frequently present concomitantly. Anti-GA1 anti-glycolipid antibodies were detected in both acute canine polyradiculoneuritis and control animals. Both for anti-GM2 and anti-GalNAc-GD1a anti-glycolipid antibodies, sex was found a significantly associated factor with a female to male odds ratio of 2.55 (1.27 to 5.31) and 3.00 (1.22 to 7.89), respectively. Anti-GalNAc-GD1a anti-glycolipid antibodies were more commonly observed in dogs unable to walk (OR 4.56, 1.56 to 14.87). CLINICAL SIGNIFICANCE: Anti-GM2 and anti-GalNAc-GD1a immunoglobulin G anti-glycolipid antibodies represent serum biomarkers for acute canine polyradiculoneuritis.This study was funded by PetSavers, the charitable division of the BSAVA, and by The Wellcome Trust (Grants 092805 and 202789 awarded to HJW).https://onlinelibrary.wiley.com/journal/17485827Companion Animal Clinical Studie

    Gravity field of the southern Colima graben, Mexico

    Get PDF
    El graben de Colima consiste en dos distintas provincias estructurales separadas por la zona de Falla La Cumbre. Los resultados de un estudio gravimétrico en las åreas costa y en el océano de la provincia del sur sugiere que la porci6n sur del graben de Colima tiene unos 100 km de ancho y estå formado por dos gråbenes mayores con orientaciones NE-SW. Estos gråbenes estån separados por un alto angosto con también orientación NE-SW y constituido por magma inyectado a lo largo de una zona de fractura pre-existente. El graben del noroeste tiene unos 35 km de ancho y contiene alrededor de 8 km de espesor de sedimentos y presenta los valores måximos de adelgazan1iento cortical. El graben al sureste tiene unos 60 km de ancho y contiene alrededor de 6 km de sedimentos. doi: https://doi.org/10.22201/igeof.00167169p.1993.32.4.60

    Right-lateral active faulting between southern Baja California and the Pacific Plate: the Tosco-Abreojos Fault

    No full text
    Geological Society of America. Special Paper, v. 422, p. 287-300, 2007. http://dx.doi.org/10.1130/2007.2422(09)​International audienc

    Oceanic-ridge subduction vs. slab break off: Plate tectonic evolution along the Baja California Sur continental margin since 15 Ma

    No full text
    International audienceThe interaction of the Pacific-Farallon spreading centers with the North American convergent margin off Baja California, Mexico, supposedly ceased at 12 Ma, when plate convergence and seafloor spreading stopped. We propose a new geodynamic evolution based on full bathymetry coverage and magnetic profiles from 23°N to 27°N (Famex cruise of the R/V L'Atalante, April 2002). The data unveil a major clockwise rotation of the Pacific-Farallon spreading direction, starting ca. 14 Ma, that formed a series of short spreading centers that became extinct ca. 8–7 Ma. We suggest that the transcurrent motion between the Pacific and North America along Baja California was accommodated by seafloor spreading and oblique convergence along the trench. This change in spreading direction was followed by a concomitant progressive demise of both Pacific-Farallon seafloor spreading and Farallon–North America subduction that are attributed to the break-off of the Farallon slab. This also resulted in the opening of a trench-parallel slab window beneath Baja California

    Thermal state of the Guaymas Basin derived from gas hydrate bottom simulating reflections and heat flow measurements

    No full text
    Seafloor heat flow provides information about the thermal evolution of the lithosphere, the magnitude and timing of volcanic activity, and hydrothermal circulation patterns. In the central Gulf of California, the Guaymas Basin is part of a young marginal spreading rift system that experiences high sedimentation (1–5 km/Myr) and widespread magmatic intrusions in the axial troughs and the off-axis regions. Heat flow variations record magmatic and sedimentary processes affecting the thermal evolution of the basin. Here, we present new seismic evidence of a widespread bottom-simulating reflection (BSR) in the northwestern Guaymas Basin. Using the BSR depths and thermal conductivity measurements, we determine geothermal gradient and surface heat flow variations. The BSR-derived heat flow values are less than the conductive lithospheric heat flow predictions for mid-oceanic ridges. They suggest that high sedimentation (0.3–1 km/Myr) suppresses the lithospheric heat flow. In the central and southeastern regions of the basin, the BSR-derived geothermal gradient increases as the intruded magmatic units reach shallower subsurface depths. Thermal modeling shows that recent (<5000 years) igneous intrusions (<500 m below the seafloor) and associated fluid flow elevate the surface heat flow up to five times. BSR-derived geothermal gradients correlate little with the depth of the shallowest magmatic emplacements to the north, where the intrusions have already cooled for some time, and the associated hydrothermal activity is about to shut down. Key Points - A regional bottom-simulating reflection (BSR) in the Guaymas Basin indicates a widespread occurrence of gas hydrates - The BSR derived thermal gradients show wavy patterns farther away from the spreading centre, indicating strong lateral heat flow variations - High sedimentation suppresses heat flow, while recent magmatic intrusion and fluid advection increase heat flo
    corecore