

University of Parma Research Repository

Serum anti-GM2 and anti-GalNAc-GD1a IgG antibodies are biomarkers for acute canine polyradiculoneuritis

This is a pre print version of the following article:

Original

Serum anti-GM2 and anti-GalNAc-GD1a IgG antibodies are biomarkers for acute canine polyradiculoneuritis / Halstead, S. K.; Gourlay, D. S.; Penderis, J.; Bianchi, E.; Dondi, M.; Wessmann, A.; Musteata, M.; Le Chevoir, M.; Martinez-Anton, L.; Bhatti, S. F. M.; Volk, H.; Mateo, I.; Tipold, A.; Ives, E.; Pakozdy, A.; Gutierrez-Quintana, R.; Brocal, J.; Whitehead, Z.; Granger, N.; Pazzi, P.; Harcourt-Brown, T.; Jose-Lopez, R.; Rupp, S.; Schenk, H. C.; Smith, P.; Gandini, G.; Menchetti, M.; Mortera-Balsa, V.; Rusbridge, C.; Tauro, A.; Cozzi, F.; Deutschland, M.; Tirrito, F.; Freeman, P.; Lowrie, M.; Jackson, M. R.; Willison, H. J.; *Availability* In: JOURNAL OF SMALL ANIMAL PRACTICE, ISSN 0022-4510 This Version is available at: 11381/2905621 since: 2021-12-16112:35:16Z

Publisher: John Wiley and Sons Inc

Published DOI:10.1111/jsap.13439

Terms of use: openAccess

Anyone can freely access the full text of works made available as "Open Access". Works made available

Publisher copyright

(Article begins on next page)

Serum anti-GM2 and anti-GalNAc-GD1a IgG antibodies are biomarkers of acute 1 canine polyradiculoneuritis 2 3 Abstract 4 5 Objectives: A previous single-country pilot study indicated serum anti-GM2 and anti-GA1 anti-glycolipid antibodies (AGAbs) as potential biomarkers for acute canine polyradiculoneuritis (ACP). This study aims 6 7 to validate these findings in a large geographically heterogenous cohort. Materials and Methods: Sera from 175 dogs clinically diagnosed with ACP, 112 dogs with other 8 9 peripheral nerve, cranial nerve or neuromuscular disorders (ONM) and 226 neurologically normal dogs 10 (CTRL) were screened for AGAbs against 11 common glycolipid targets to determine the IgG AGAb(s) 11 with the highest combined sensitivity and specificity for ACP. Results: Anti-GM2 AGAbs reached the highest combined sensitivity and specificity (sensitivity: 65.1%, 12 13 95% CI 57.6-72.2%; specificity: 90.2%, 95% CI 83.1-95.0%), followed by anti-GalNAc-GD1a AGAbs (sensitivity: 61.7%, 95% CI 54.1-68.9%; specificity: 94.1%, 95% CI 82.0-94.3%) and these AGAbs were 14 15 frequently present concomitantly. Anti-GA1 AGAbs were detected in both ACP and control animals. Both for anti-GM2 and anti-GalNAc-GD1a AGAbs, sex was found a significantly associated factor with a 16 17 female to male odds ratio of 2.55 (p=0.0096) and 3.00 (p=0.0198), respectively. Anti-GalNAc-GD1a 18 AGAbs were more commonly observed in dogs unable to walk (odds ratio 4.56; p=0.0076). Clinical significance: Anti-GM2 and anti-GalNAc-GD1a IgG AGAbs represent serum biomarkers of ACP. 19 20 21 Introduction 22

- 23 Acute canine polyradiculoneuritis (ACP), characterised by acute onset of rapidly progressive lower motor
- 24 neuron flaccid para/tetraparesis, potentially progressing to tetraplegia and frequently associated with

25	dysphonia (Cuddon 2002, Martinez-Anton and others 2018), is a common sporadic peripheral	
26	neuropathy in dogs (Hirschvogel and others 2012, Olby 2004). Due to its similarity both in the clinical	
27	presentation and pathological findings (Cummings and Haas 1967, Northington and Brown 1982) to the	
28	human autoimmune neuropathy Guillain-Barré syndrome (GBS) (Elf and others 2014), it is considered to	
29	represent the canine equivalent to GBS (Cuddon 2002). In human GBS, serum anti-glycolipid antibodies	
30	(AGAbs) are frequently present in certain clinical subtypes, such as acute motor axonal forms or Miller	
31	Fisher syndrome, where certain AGAbs are seen in <mark>55.9% (individual AGAb) to 86.3% (AGAb panel) and</mark>	
32	89.2% of cases, respectively (Halstead and others 2016, Yoshikawa and others 2018). This prompted our	
33	previous study conducted in a small cohort of Italian dogs clinically and electrophysiologically diagnosed	
34	with ACP in which we identified ACP-specific serum AGAbs in 60% of cases (Rupp and others 2013). In	
35	contrast to human GBS where autoantibodies to many different sialylated glycolipids (gangliosides) are	
36	present, ACP-dogs exhibited a very distinct IgG AGAb profile directed against GM2 ganglioside. GM2	
37	ganglioside is an uncommon AGAb target in human GBS (<10% of cases), with AGAbs typically of IgM	
38	subtype and linked to a previous infection with Cytomegalovirus (Caudie and others 2002, Khalili-Shirazi	
39	and others 1999, O'Hanlon and others 2000).	
40	The diagnosis of ACP is based on the typical clinical presentation supported by salient electrodiagnostic	
41	findings, unremarkable laboratory data and CSF analysis (other than albuminocytologic dissociation),	
42	and potential muscle/nerve biopsies, combined with the exclusion of other clinically similar diseases	
43	including botulism, myasthenia gravis, tick paralysis, snake envenomation and organophosphate toxicity	
44	(Cuddon 2002, Olby 2004). Fatal respiratory paralysis and/or concurrent aspiration pneumonia may	
45	occur, however, typically is rare (Cuddon 2002, Cummings and Haas 1967, Northington and Brown 1982,	
46	Rupp and others 2013). Generally, the prognosis for the majority of dogs affected with ACP is good,	
47	provided they receive appropriate intensive nursing and physiotherapy, and spontaneous recovery	

48 occurs over a number of weeks to months (de Lahunta and Glass 2009, Hirschvogel and others 2012).

Commentato [AT1]: This sentence is not clear in my opinion. I may suggest the below: 'in 55.9% (individual AGAb) to 86.3% (AGAb panel) (Halstead and others 2016) and 89.2% of cases (Yoshikawa and others 2018).

49	Therefore, a biomarker with high sensitivity and specificity would represent a useful supplement to
50	other diagnostic investigations both for veterinarians and owners in order to direct appropriate care and
51	prognostication. This validation study aimed to provide general relevance to our previous finding of
52	AGAbs in Italian ACP-dogs by determining the seroprevalence of AGAbs in a geographically diverse
53	population of dogs clinically diagnosed with ACP and in comparison, to both dogs diagnosed with other
54	neuromuscular, peripheral nerve and cranial nerve disorders and neurologically normal control dogs.
55	

56

57 Materials and Methods

58 Sample submission

59 Over 3 years (2014 - 2016), a national (UK) and international call for serum samples from dogs clinically

60 diagnosed with ACP was sent out to selected board-certified veterinary neurologists. In addition to the

61 pre-selected group of neurologists, other veterinary surgeons and neurologists contributed ACP cases

62 and samples to this study either following word of mouth advertisement or on hearing presentation of

- 63 prior data at conferences.
- 64 The diagnosis of ACP was based on the presence of rapid onset (2-4 days) flaccid, lower motor neuron

65 para/tetraparesis progressing to maximal severity within 2 weeks of onset, and exhibiting the potential

- 66 progression to tetraplegia and variable hyperaesthesia (Anor 2014, Hirschvogel and others 2012, Laws
- and others 2017), supported by additional investigations as seen fit by the collaborator, results of which
- 68 included inconspicuous serology and biochemistry, consistent CSF changes, and electrodiagnostic
- 69 findings (Cuddon 1998) comprising (delayed) spontaneous myofibre activity on electromyography
- 70 (EMG), decrease, delay or absence of F-waves, decreased compound muscle action potential amplitudes
- 71 and variably decreased motor nerve conduction velocity, and combined with a history of lack of toxin
- 72 exposure, snake bites or presence of ticks. Investigators were also asked to collect serum samples from

73	dogs presenting with other cranial nerve, peripheral nerve or neuromuscular disorders (ONM) and/or	
74	age-, sex- and breed matched samples from neurologically normal dogs (CTRL), when possible. All	
75	contributors were provided with sample submission guidelines, owner information sheets, consent	
76	forms and a questionnaire addressing epidemiological data (signalment, date of disease onset,	
77	presentation and sampling), clinical features, preceding events (within 3 weeks of disease onset) and	
78	additional investigations (such as electrophysiology, CSF-examination, serology, biochemistry, imaging,	
79	etc).	
80	Serum sample submission directly corresponded to the guidelines of international, serological	
81	investigations conducted in GBS (IGOS – International GBS outcome study (Jacobs and others 2017)) and	
82	required the submission of frozen sera shipped on dry ice, or for fresh serum samples submitted from	
83	within the UK at ambient temperature.	
84	Upon receipt, all serum samples and questionnaires were blinded by coding and sera were stored at -	
85	80°C until use.	
85 86	80°C until use.	
85 86 87	80°C until use. Sample screening and determination of assay cut-off values	
85 86 87 88	80°C until use. Sample screening and determination of assay cut-off values All samples were initially screened in triplicate for the presence of AGAbs against a broad panel of 10	
85 86 87 88 89	80°C until use. Sample screening and determination of assay cut-off values All samples were initially screened in triplicate for the presence of AGAbs against a broad panel of 10 glycolipids using combinatorial glycolipid microarrays as previously described (Halstead and others	
85 86 87 88 89 90	80°C until use. Sample screening and determination of assay cut-off values All samples were initially screened in triplicate for the presence of AGAbs against a broad panel of 10 glycolipids using combinatorial glycolipid microarrays as previously described (Halstead and others 2016) and in parallel with positive and negative quality controls (dog sera with and without AGAbs).	
85 86 87 88 89 90 91	80°C until use. Sample screening and determination of assay cut-off values All samples were initially screened in triplicate for the presence of AGAbs against a broad panel of 10 glycolipids using combinatorial glycolipid microarrays as previously described (Halstead and others 2016) and in parallel with positive and negative quality controls (dog sera with and without AGAbs). Based on results from this screen, a refined panel of four key glycolipid antigens was selected for a	
85 86 87 88 89 90 91 92	80°C until use. Sample screening and determination of assay cut-off values All samples were initially screened in triplicate for the presence of AGAbs against a broad panel of 10 glycolipids using combinatorial glycolipid microarrays as previously described (Halstead and others 2016) and in parallel with positive and negative quality controls (dog sera with and without AGAbs). Based on results from this screen, a refined panel of four key glycolipid antigens was selected for a further single round of screening. In brief, panels of either 10 (sulphatide, GM1, GM2, GA1, GD1a, GD1b,	
85 86 87 88 89 90 91 92 93	80°C until use. Sample screening and determination of assay cut-off values All samples were initially screened in triplicate for the presence of AGAbs against a broad panel of 10 glycolipids using combinatorial glycolipid microarrays as previously described (Halstead and others 2016) and in parallel with positive and negative quality controls (dog sera with and without AGAbs). Based on results from this screen, a refined panel of four key glycolipid antigens was selected for a further single round of screening. In brief, panels of either 10 (sulphatide, GM1, GM2, GA1, GD1a, GD1b, GD3, GalC, SGPG) or four glycolipid antigens (GM1, GM2, GA1 and GalNAc-GD1a), in addition to	
85 86 87 88 90 91 92 93 94	80°C until use. Sample screening and determination of assay cut-off values All samples were initially screened in triplicate for the presence of AGAbs against a broad panel of 10 glycolipids using combinatorial glycolipid microarrays as previously described (Halstead and others 2016) and in parallel with positive and negative quality controls (dog sera with and without AGAbs). Based on results from this screen, a refined panel of four key glycolipid antigens was selected for a further single round of screening. In brief, panels of either 10 (sulphatide, GM1, GM2, GA1, GD1a, GD1b, GD3, GalC, SGPG) or four glycolipid antigens (GM1, GM2, GA1 and GalNAc-GD1a), in addition to their 1:1 (v:v) heteromeric complexes, each at 200µg/ml, were printed in duplicate onto glass slides	
85 86 87 88 89 90 91 92 93 94 95	80°C until use. Sample screening and determination of assay cut-off values All samples were initially screened in triplicate for the presence of AGAbs against a broad panel of 10 glycolipids using combinatorial glycolipid microarrays as previously described (Halstead and others 2016) and in parallel with positive and negative quality controls (dog sera with and without AGAbs). Based on results from this screen, a refined panel of four key glycolipid antigens was selected for a further single round of screening. In brief, panels of either 10 (sulphatide, GM1, GM2, GA1, GD1a, GD1b, GT1b, GD3, GalC, SGPG) or four glycolipid antigens (GM1, GM2, GA1 and GalNAc-GD1a), in addition to their 1:1 (v:v) heteromeric complexes, each at 200µg/ml, were printed in duplicate onto glass slides coated in low fluorescence polyvinylidene difluoride (PVDF) membrane. After blocking in 2% bovine	

97	applied to each array. Anti-glycolipid IgG binding was detected using fluorescence-conjugated, isotype-	
98	specific, anti-dog IgG antibody ($3\mu g/ml$; Jackson ImmunoResearch Laboratories) and the median	
99	fluorescence signal associated with each antigen spot was quantitated (Genepix 4300A microarray	
100	scanner, Molecular Devices). Following subtraction of the local fluorescence background signal, the	
101	mean for the duplicate antigens spots was calculated and expressed as fluorescence intensity unit (FIU).	
102		
103	Data analysis and statistics	
104	The optimal FIU cut-off value for serological diagnosis of ACP was determined for each target by plotting	
105	the ROC curve (MedCalc software) and then using the Youden index (J) method (Youden 1950), which	
106	calculated the optimal threshold value based on each biomarker's ability to differentiate between ACP	
107	and ONM groups when equal weight is given to sensitivity and specificity. For the comparison of paired	
108	ROC curves, the DeLong method was applied (Delong 1988). Heat maps created in MeV	
109	(MultiExperiment Viewer software; version 4.9.0) in the TM4 software suite and employing the rainbow	
110	scale, were used for graphical display of array FIU values.	
111	Following thresholding of antibody into positive/negative, the relevant sampling, epidemiological and	
112	clinical parameters included in a generalised linear model (logit link) were determined separately for	
113	each antibody by minimisation of the Akaike information criterion. These were ambulatory status, sex	
114	and onset season in the case of anti-GM2 positivity (fitted to 156 observations, 5 degrees of freedom),	
115	and ambulatory status, sex, onset season, time from onset to sampling, involvement of cranial nerves 5	
116	and 7, and dysphonia for anti-GalNAc-GD1a positivity (fitted to 119 observations, 9 degrees of freedom).	
117	The significance of the fitting was confirmed by comparison with the null model using likelihood ratio	
118	testing. The effect sizes of statistically significant predictors (p \leq 0.05) are presented as odds ratios with	
119	a 95% confidence interval. Analysis was performed using R (3.6.3, R core Team 2021; https://www.R-	
120	project.org/).	

Commentato [AT2]: In 114 you mention CN VII, here you mention CN 5 and CN 7, then (line 144) CN VII, and later (line 218) CN V, VII and XII. I would use roman numerals here and I may suggest adding at the line 114 that CN V and XII were also affected with or without the respective percentage values.

121

122 Results

- 123 Sample submission, epidemiological and clinical data
- 124 In total, 513 samples were submitted by 27 veterinarians from 21 institutions across nine temperate
- 125 countries worldwide (Table 1). Out of these, 448 samples (87.3%; ACP: 159; ONM: 105; CTRL: 184) were
- 126 submitted by board-certified neurologists or veterinarians under their supervision, and 420 samples
- 127 (81.9%; ACP: 159; ONM: 96; CTRL: 165) were submitted under optimal temperature conditions. There
- 128 was no overlap between samples submitted from non-boarded submitters and samples submitted
- 129 under suboptimal conditions. Some samples from both diseased and control groups had previously been
- 130 included in our preliminary study (n=38) (Rupp and others 2013) or other studies associated with ACP
- 131 (n=48) (Martinez-Anton and others 2018).
- 132 Signalment was available for 506/513 dogs (98.6%) and 162/175 (92.6%) of ACP-samples were
- 133 accompanied by clinical questionnaires, indicating that in 96 dogs (59.3%) the clinical examinations had
- 134 been supported by electrophysiologic examinations, in 55 dogs (40.0%) by CSF-examination, in 105 dogs
- 135 (64.8%) by other laboratory investigations, in 63 dogs (38.9%) by imaging procedures and in 15 dogs
- 136 (9.3%) by muscle/nerve biopsies. Ages of ACP-dogs ranged from 2 months to 15 years and all sizes of
- 137 dogs were represented (Table 1).
- 138 In those ACP-dogs where the month of disease onset was known (158/175; 90.3%), the highest
- 139 proportion of dogs (31%) exhibited an onset over the winter months (December, January and February
- 140 for Northern Hemisphere; June, July and August for Southern Hemisphere), followed by summer
- 141 (25.9%), autumn (24.1%) and spring (19.0%).
- 142 The most common presentation for ACP-dogs was non-ambulatory tetraparesis (105/162; 64.8%),
- 143 hyporeflexia (135/155; 87.1%) and dysphonia (93/150; 62.0%). If other cranial nerves were involved, this
- 144 was most frequently CNVII (44/160; 27.5%). Respiratory compromise was present in 14.6% (23/158) of

145	dogs. Preceding events in ACP-dogs (18.8%) comprised vaccination over the last 6 weeks (11/149; 7.4%),		
146	or gastrointestinal signs (13/149; 8.7%) or respiratory signs (4/149; 2.7%) over the preceding 3 weeks		
147	(Table 2). Vaccinations administered and when reported (6/11), comprised the core vaccines CDV, CPV,		
148	CAV-2 and various combinations of non-core vaccines (Canine Parainfluenza Virus, Bordetella		
149	bronchiseptica and Leptospira spp.).		
150	Diagnoses in the 112 ONM-dogs comprised 51 cases of peripheral neuropathies that were		
151	polyneuropathies with and without muscle involvement not considered compatible with ACP (n=20),		
152	chronic (n=15), degenerative (n=4), metabolic (n=2), breed-specific (Leonberger; n=2), paraneoplastic		
153	(n=2) or drug-induced (n=1), or mononeuropathies (n=5). Additionally, there were cranial neuropathies		
154	(n=41), myasthenia gravis (n=12), (poly-)myositis (n=5), botulism (n=2) and storage myopathy (n=1).		
155			
156	Serology		
157	The preliminary antibody screen, directed against a broad panel of 10 glycolipid targets and their		
158	associated 1:1 heteromeric complexes, highlighted the three glycolipids GM1, GM2 and GA1 as the most		
159	frequent targets for IgG AGAbs in ACP-dogs. Other single or heteromeric glycolipid targets (as listed in		
160	methods) did not yield any significant positive samples in ACP cases or controls. Subsequently, all sera		ha eliminato: ¶
161	were screened against a refined array containing these three glycolipids and additionally GalNAc-GD1a_		
162	(and their 1:1 heteromeric complexes), since GalNAc-GD1a shares the terminal epitope GalNAc β 1-		ha eliminato: this glycolipid
163	4(Neu5Ac α 2-3)Gal with GM2, an already known cross-reactive epitope for neuropathy-associated		
164	autoantibodies (Ilyas and others 1988).		
165	This refined four-glycolipid antigen screen (Fig. 1) revealed that 156/175 (89.1%) ACP-dogs possessed		
166	serum IgG antibodies greater than the cut-off threshold against one or more of the single glycolipid	1	ha eliminato: se
167	targets, Anti-GM2 IgG AGAbs (Figs. 2 and 3) were the most frequently detected AGAb in ACP samples		font:bold in table 3 is not clearly distinguishable from the rest. As the reviewer mention this issue, you may circle or
168	(114/175; 65.1%), followed by anti-GalNAc-GD1a IgG AGAbs (108/175; 61.7%). One hundred ACP-sera		highlight in a different colour the most frequently detected AGAb?!
		Y	ha eliminato: (Figs. 1 and 2)

173	(57.1%) were reactive (above threshold) against both GM2 and GalNAc-GD1a, with the majority (66/100;
174	66.0%) exhibiting higher relative intensity binding to GM2. Anti-GM1 IgG AGAbs were less frequently
175	observed (59/175; 33.7.6%) and were only very rarely present as the sole key glycolipid target (5/43;
176	11.6%; Fig. 2). Finally, whilst anti-GA1 Ig AGAb was present in a high proportion of ACP samples
177	(120/175; 68.6%) and was the most common solitary AGAb (26/120; 21.7%) present in ACP serum, anti-
178	GA1 Ig AGAb was not a specific marker of ACP, as both ONM and CTRL sera also frequently contained
179	this AGAb (51/112 (45.5%) and 116/226 (51.3%), respectively; Fig. 1).
180	When examined by ROC analysis which gives equal weight to both the sensitivity and specificity of an
181	assay, anti-GM2 AGAbs reached the highest combined sensitivity and specificity, closely followed by
182	anti-GalNAc-GD1a AGAbs (Fig. 4 and Table 3). No statistically significant difference was observed when
183	comparing anti-GM2 and anti-GalNAc-GD1a AGAbs (p=0.3750), however, the ROC curves for both of
184	these were significantly different from anti-GM1 and anti-GA1 AGAbs (p<0.0001 in all cases).
185	Examining heteromeric complexes of two glycolipids as targets, GM2:GalNAc-GD1a (Fig. 3) reached the
186	highest combined sensitivity and specificity (sensitivity 66.9%, specificity 91.1%; Table 3) and also the
187	combination of anti-GM2 and/or anti-GalNAc-GD1a as individual AGAbs gave the highest combined
188	sensitivity and specificity (sensitivity: 69.7%; specificity: 86.6%). However, when additionally considering
189	the presence of anti-GM1 and anti-GA1 AGAbs as markers, the overall performance of the assay
190	decreased due to a loss in specificity.
191	

192 Influence of sample submission variables, epidemiological and clinical data on serology

193 The majority of samples in this study were submitted by board-certified veterinary neurologists (or

194 trainees under their direct supervision) and under optimal temperature conditions (87.3% and 81.9%,

respectively). Most ACP-sera for which the sampling interval was known (n=135; overall range 1-130

196 days) were collected within 3 weeks of disease onset (85.9%; 116/135). Both for anti-GM2 and anti-

- 197 GalNAc-GD1a AGAb-positive samples, no significant effects associated with sample collection and
- 198 handling, such as time taken from disease onset to sampling (including thresholding at 3 weeks) and
- 199 sample thawing were observed. Importantly, there also was no evidence of an effect associated with the
- 200 credentials of the sample contributor (board-certified neurologist or not).
- AGAbs were more common in female dogs; 57% (57/100) of male and 76% (57/75) of female ACP-dogs
- 202 had anti-GM2 AGAbs, giving a female to male odds ratio of 2.55 (1.27 to 5.31; p=0.0096), and 53%
- 203 (53/100) of male and 73.3% (55/75) of female ACP-dogs had anti-GalNAc-GD1a AGAbs modelled with a
- 204 female to male odds ratio of 3.00 (1.22 to 7.89; p=0.0198).
- 205 With respect to age-distribution, none of the very young ACP-dogs (2-5 months; n=6) exhibited anti-
- 206 GM2 or anti-GalNAc-GD1a AGAbs. Whilst most breeds of ACP-dogs and also cross-breeds exhibited anti-
- 207 GM2 and/or anti-GalNAc-GD1a AGAbs, a small number of breeds, which included Poodles (9/9), West
- Highland White Terriers (6/6), Maltese (5/5), Griffon Bruxellois (4/4), Siberian Huskies (4/4) and Fox
- 209 Terriers (4/4) attracted attention by the fact that the AGAbs under investigation were identified in all
- 210 the ACP-dogs submitted from these breeds.
- 211 When examining the AGAb profile of non-ambulatory dogs, 67.7% (86/127) had anti-GM2 AGAbs
- 212 compared with 48.6% (17/35) of ambulatory dogs. Likewise, anti-GalNAc-GD1a AGAbs were more
- frequently present in non-ambulatory ACP-dogs (65.4%; 83/127) than in ambulatory dogs (40%; 14/35),
- 214 however only for anti-GalNAc-GD1a AGAbs was the lack of ambulation significantly associated with the
- 215 presence of AGAbs (modelled odds ratio: 4.56 (1.56 to 14.87); p=0.0076).
- 216 None of the other clinical or epidemiological parameters investigated, including hyporeflexia, areflexia,
- 217 hyperaesthesia, involvement of cranial nerves (including comparison of specific nerves such as CNV,
- 218 CNVII and CNXII), dysphonia, respiratory compromise, aspiration pneumonia, presence of
- 219 megaoesophagus, season of onset or preceding events were found to be significantly associated with
- 220 the presence of anti-GM2 or anti-GalNAc-GD1a AGAbs.

221	With respect to preceding events, , four of the 11 dogs which had been vaccinated within 6 weeks of	ha eliminato: however, interestingly
222	disease onset had both anti-GM2 and anti-GalNAc-GD1a AGAbs, with a fifth dog having anti-GM2 AGAbs	
223	only. These five dogs ranged in age from 8-11 years. In contrast, no ACP-dogs vaccinated under the age	
224	of 6 months (n=5) and who all developed ACP within 3 weeks of vaccination had detectable AGAbs. For	
225	ACP-dogs with preceding gastrointestinal (n=13) and respiratory (n=4) signs, 8/13 (61.5%) and 3/4	
226	(75.0%) exhibited AGAbs (concurrent anti-GM2 AGAbs and anti-GalNAc-GD1a AGAbs), respectively.	
227		
228	Anti-GM2 and anti-GalNAc-GD1a AGAb-positive controls	
229	Fifteen of the 112 ONM-dogs (13.4%) had either anti-GM2 AGAbs (3/15), anti-GalNAc-GD1a AGAbs	
230	(4/15) or AGAbs reactive against both targets (8/15). The reported diagnoses for these ONM dogs were	
231	axonal polyneuropathy (n=3), chronic polyneuropathy (n=3), and n=1 each of axonal polyneuropathy	
232	without preferential nerve root involvement, bilateral facial and vestibular neuropathy, unilateral	
233	abducens neuropathy, proximal demyelinating polyneuropathy, polyneuropathy without recovery,	
234	polyneuromyopathy, myasthenia gravis with concurrent polyneuropathy, neuromuscular syndrome with	
235	concurrent hypothyroidism, and caudal brachial plexus avulsion.	
236	Finally, 16 of the 226 CTRL dogs (7.1%) exhibited anti-GM2 AGAbs (8/16), anti-GalNAc-GD1a AGAbs	
237	(4/16) or both these AGAbs (4/16).	
238		
239		
240	Discussion	
241	This study, examining sera for AGAbs from a large, geographically heterogenous group of dogs of various	

- 242 different breeds and ages clinically diagnosed with ACP, confirmed and extended previous results
- 243 showing anti-GM2 IgG antibodies as potentially useful biomarkers for ACP in a smaller group of dogs
- 244 from Italy (Rupp and others 2013). In addition, we confirmed the salient clinical and seasonal features

246	described in previous literature (Hirschvogel and others 2012, Laws and others 2017, Martinez-Anton
247	and others 2018).
248	In comparison with human GBS, in which AGAb profiles are heterogenous according to clinical subtypes
249	(Goodfellow and Willison 2016), ACP-dogs examined for the same antigenic targets as human GBS-
250	patients exhibit a more homogenous AGAb profile with predominant binding to the glycolipids GM2
251	and/or GalNAc-GD1a. Co-existence of these two AGAbs in a single serum is frequently observed, either
252	representing two distinct antibody species each recognizing unique molecular components on the
253	gangliosides GM2 and GalNAc-GD1a, or more likely a single antibody species which binds to the shared
254	terminal trisaccharide moiety present on both gangliosides (Ilyas and others 1988, Santafe and others
255	2005). In human neuropathy subjects, the co-existence of anti-GM2 and anti-GalNAc-GD1a (albeit IgM)
256	AGAbs is seen in GBS-patients with a predominantly demyelinating neuropathy characterised by sensory
257	loss, frequent facial nerve deficits and only mild weakness (Kaida and others 2001), and has also been
258	reported in chronic sensory demyelinating neuropathies (Lopate and others 2002) and a chronic motor
259	demyelinating neuropathy (Ortiz and others 2001). The anti-GM2 AGAb association with predominantly
260	demyelinating features may also correlate with the demyelination seen in ACP (Cummings and Haas
261	1967, Northington and others 1981) and is further supported by immunostaining studies that localise
262	GM2 in canine peripheral nerve to the abaxonal Schwann cell surface and less commonly to axons
263	themselves (Rupp and others 2013). However, AGAbs that bind the shared terminal moiety common to
264	GM2 and GalNAc-GD1a have also been observed binding murine motor nerve terminals and Schwann
265	cells overlying the motor nerve terminal, suggesting that distal nerve structures might also be targeted
266	in disease (Santafe and others 2005). Research has demonstrated that one mechanism by which AGAbs
267	can lead to injury of structures is by activation of the complement cascade and formation of a
268	membrane attack complex (Halstead and others 2005). This results in pathological changes to and
269	dysfunction of the structures targeted (Halstead and others 2004, McGonigal and others 2010, O'Hanlon

270	and others 2001, Rupp and others 2012), with complement inhibitors in turn being able to abrogate	
271	injury and dysfunction (Halstead and others 2008) and such treatment now being assessed alongside	
272	immunoglobulin treatment of GBS-patients (Davidson and others 2017). Damage to Schwann cells,	
273	axons and motor nerve terminals could lead to the mixed axonal and demyelinating	
274	(electrophysiological) phenotype described in ACP-dogs (Cuddon 1998, Hirschvogel and others 2012,	
275	Rupp and others 2013), where it has been suggested that whilst electrophysiological changes are	
276	reported both in the nerve roots and along the entire peripheral nerve, distal motor axonal changes may	
277	mask the ability to detect demyelination along the length of the nerve (Cuddon 1998).	
278	Only a small proportion of ACP-dogs (7.4%; n=11) had been vaccinated in the six weeks preceding	
279	disease onset, which either confirms that post-vaccination onset of ACP is extremely rare (Olby 2004) or	
280	indicates that there actually is no such association. Interestingly, all six ACP-puppies (dogs younger than	
281	6 months), five of which in this study were reported to have developed disease within three weeks of	
282	vaccination, were devoid of both anti-GM2 and anti-GalNAc-GD1a AGAbs. In contrast to this, the	
283	majority of the six older dogs presenting with ACP post-vaccination, commonly with slightly longer	
284	timeframes (up to 6 weeks) developed anti-GM2 and anti-GalNAc-GD1a AGAbs. The reason for this is	
285	unclear, considering that vaccine components for standard vaccination of dogs should not differ	
286	between puppies and adult dogs, whilst the results for the combined age groups are less supportive of a	
287	reliable association between vaccination and ACP. Unfortunately, exact vaccination protocols were un-	
288	retrievable for the majority of dogs, but these interesting observations could be explored in future	
289	studies, also to determine a true risk for post-vaccination ACP, especially in puppies.	
290	Gastrointestinal and respiratory upset preceding disease onset within 3 weeks were reported in a	
291	relatively low number of ACP-dogs (combined total of 11.4%) and were not associated with the presence	
292	or absence of AGAbs. Recent research describes the consumption of raw chicken, associated with a	

293 potential mild clinical or subclinical infection with *Campylobacter* spp as a risk factor for the

294	development of ACP (Martinez-Anton and others 2018). Campylobacter infection is commonly
295	associated with human GBS and considerable data indicates that molecular mimicry between
296	Campylobacter lipo-oligosaccharides and gangliosides is the underlying mechanistic driver for the
297	development of AGAbs and consequent GBS (Willison and Yuki 2002). It is possible that a similar
298	mechanism might be present in canine ACP, at least that associated with AGAbs and perhaps associated
299	with a clinically silent Campylobacter spp infection.
300	In several dog breeds, all ACP-dogs exhibited the AGAbs under investigation. This may echo a greater
301	risk described for West Highland White Terriers to develop ACP (Laws and others 2017), and Maltese
302	and Poodles representing the most commonly affected breeds in a different study (Martinez-Anton and
303	others 2018). Furthermore, Poodles, Siberian Huskies, West Highland White Terriers and Maltese
304	represent breeds described or suspected to be predisposed to autoimmune-mediated diseases in
305	general (Abramson 2004, Bergvall 2012, Dodi 2015, White 2012). Whilst the relatively small sample
306	group size did not allow for further analyses of these observations, examination of larger groups of
307	these dogs could potentially highlight involved susceptibility genes, in turn shedding light on
308	pathomechanisms.
309	A small proportion of dogs in the two control groups had anti-GM2 and/or anti-GalNAc-GD1a AGAbs, as
310	we previously described (Rupp and others 2013) and as occasionally also is observed in human non-
311	neurological serum control samples (O'Hanlon and others 2000). Considering 93/112 ONM samples
312	(83.0%) represented various forms of peripheral and cranial neuropathies, this further supports that the
313	AGAbs under investigation indeed are most likely to be directly associated with and specific to ACP and
314	do not represent unrelated AGAbs, i.e. bystanders for example developing as a consequence to nerve
315	damage. In the ONM-group, the AGAb-positive cases included six dogs affected with acute peripheral
316	polyneuropathies deemed clinically or electrophysiologically incompatible with ACP and nine dogs with
317	various other diagnoses. Whether especially these first six dogs represent misdiagnoses of variants or

318	formes frustes of ACP or true false positives, or a combination of both is presently unknown. All efforts
319	were made to standardize case ascertainment and sample submission/preparation and we have no
320	evidence to indicate diagnostic acumen or sample preparation, both of which represent the most
321	significant limitations in this large multi-centre study, to have affected our results. In regard to logistical
322	aspects of sample handling, our analysis indicates that specimen submission at room temperature or
323	accompanied by an icepack (if previously frozen) is sufficient for the determination of AGAbs. Finally, the
324	overall seropositivity of 60-65% for the AGAbs under investigation may reflect that ACP may have
325	varying underlying immunological causes, some of which associated with distinct, yet so far unidentified
326	biomarkers, and that similar to human GBS, a number of different AGAbs may play a role in supporting
327	the clinical diagnosis (Kusunoki 2021), overall warranting further research in this field.
328	In summary, the results of this study confirm the value of examining dogs clinically diagnosed with ACP
329	for the presence of serum IgG AGAbs to support the clinical diagnosis, at the same time bearing in mind
330	that a negative AGAb-result does not categorically rule out the presence of ACP. Taking into account the
331	substantial overlap of anti-GM2 and anti-GalNAc-GD1a AGAbs, the slightly higher combined sensitivity
332	and specificity for anti-GM2 AGAbs when compared to anti-GalNAc-GD1a AGAbs, and glycolipid
333	availability and cost, we conclude that anti-GM2 AGAb measurement is the most convenient single
334	supportive biomarker for ACP.
335	
336	
337	Conflicts of interest
338	No conflicts of interest have been declared.
339	
340	

341 References

342	Abramson, C. J. (2004) Neurological disorders associated with cat and dog breeds. In: BSAVA Manual of
343	Canine and Feline Neurology, 3rd edn. Ed S. R. O. Platt, N.J. BSAVA, Gloucester. pp 408-417
344	Anor, S. (2014) Acute Lower Motor Neuron Tetraparesis. Veterinary Clinics of North America: Small
345	Animal Practice 44 , 1201-1222
346	Bergvall, K. (2012) History, examination and initial evaluation. In: Canine and Feline Dermatology, Third
347	edn. Ed H. M. Jackson, R. BSAVA, Gloucester. pp 12-23
348	Caudie, C., Vial, C., Bancel, J., Petiot, P., Antoine, J. C. & Gonnaud, P. M. (2002) Antiganglioside
349	autoantibody profiles in Guillain-Barre syndrome. Annales de Biologie Clinique 60(5), 589-97
350	Cuddon, P. A. (1998) Electrophysiologic assessment of acute polyradiculoneuropathy in dogs:
351	comparison with Guillain-Barre syndrome in people. Journal of Veterinary Internal Medicine
352	12 (4), 294-303
353	Cuddon, P. A. (2002) Acquired canine peripheral neuropathies. Veterinary Clinics of North America -
354	Small Animal Practice 32 (1), 207-49
355	Cummings, J. F. & Haas, D. C. (1967) Coonhound paralysis. An acute idiopathic polyradiculoneuritis in
356	dogs resembling the Landry-Guillain-Barre syndrome. Journal of the Neurological Sciences 4(1),
357	51-81
358	Davidson, A. I., Halstead, S. K., Goodfellow, J. A., Chavada, G., Mallik, A., Overell, J., Lunn, M. P.,
359	McConnachie, A., van Doorn, P. & Willison, H. J. (2017) Inhibition of complement in Guillain-
360	Barre syndrome: the ICA-GBS study. Journal of the Peripheral Nervous System 22, 4-12
361	de Lahunta, A. & Glass, E. (2009) Lower motor neuron: spinal nerve, general somatic efferent system. In:
362	Veterinary Neuroanatomy and Clinical Neurology. Saunders, Elsevier. pp 77-133
363	DeLong, E. R., DeLong, D. M., Clarke-Pearson, D. L. (1988) Comparing the areas under two or more
364	correlated receiver operating characteristic curves: a nonparameteric approach. Biometrics 44,
365	837-845

366	Dodi, P. L. (2015) Immune-mediated keratoconjunctivitis sicca in dogs: current perspectives on
367	management. Veterinary Medicine (Auckland) 6, 341-347
368	Elf, K., Askmark, H., Nygren, I. & Punga, A. R. (2014) Vitamin D deficiency in patients with primary
369	immune-mediated peripheral neuropathies. Journal of the Neurological Sciences 345, 184-188
370	Goodfellow, J. A. & Willison, H. J. (2016) Antiganglioside, antiganglioside-complex, and antiglycolipid-
371	complex antibodies in immune-mediated neuropathies. Current Opinion in Neurology 29, 572-
372	580
373	Halstead, S. K., Humphreys, P. D., Goodfellow, J. A., Wagner, E. R., Smith, R. A. & Willison, H. J. (2005)
374	Complement inhibition abrogates nerve terminal injury in Miller Fisher syndrome. Annals of
375	Neurology 58 (2), 203-10
376	Halstead, S. K., Kalna, G., Islam, M. B., Jahan, I., Mohammad, Q. D., Jacobs, B. C., Endtz, H. P., Islam, Z. &
377	Willison, H. J. (2016) Microarray screening of Guillain-Barre syndrome sera for antibodies to
378	glycolipid complexes. Neurology Neuroimmunology & Neuroinflammation 3, e284
379	Halstead, S. K., O'Hanlon, G. M., Humphreys, P. D., Morrison, D. B., Morgan, B. P., Todd, A. J., Plomp, J. J.
380	& Willison, H. J. (2004) Anti-disialoside antibodies kill perisynaptic Schwann cells and damage
381	motor nerve terminals via membrane attack complex in a murine model of neuropathy. Brain
382	127 (Pt 9), 2109-23
383	Halstead, S. K., Zitman, F. M., Humphreys, P. D., Greenshields, K., Verschuuren, J. J., Jacobs, B. C., Rother,
384	R. P., Plomp, J. J. & Willison, H. J. (2008) Eculizumab prevents anti-ganglioside antibody-
385	mediated neuropathy in a murine model.[see comment]. Brain 131 (Pt 5), 1197-208
386	Hirschvogel, K., Jurina, K., Steinberg, T., Matiasek, L., Matiasek, K., Beltran, E. & Fischer, A. (2012) Clinical
387	course of actue canine polyradiculoneuritis following treatment with human iv immunoglobulin.

388 Journal of the American Animal Hospital Association 48, 1-11

- 389 Ilyas, A. A., Li, S. C., Chou, D. K., Li, Y. T., Jungalwala, F. B., Dalakas, M. C. & Quarles, R. H. (1988) Gangliosides GM2, IV4GalNAcGM1b, and IV4GalNAcGC1a as antigens for monoclonal 390 391 immunoglobulin M in neuropathy associated with gammopathy. Journal of Biological Chemistry 392 263, 4369-4373 393 Jacobs, B. C., van den Berg, B., Verboon, C., Chavada, G., Cornblath, D. R., Gorson, K. C., Harbo, T., 394 Hartung, H. P., Hughes, R. A. C., Kusunoki, S., van Doorn, P. A., Willison, H. J. & Consortium, I. 395 (2017) International Guillain-Barre Syndrome Outcome Study: protocol of a prospective 396 observational cohort study on clinical and biological predictors of disease course and outcome in 397 Guillain-Barre syndrome. Journal of the Peripheral Nervous System 22, 68-76 398 Kaida, K., Kusunoki, S., Kamakura, K., Motoyoshi, K. & Kanazawa, I. (2001) Guillain-Barre syndrome with 399 IgM antibody to the ganglioside GalNAc-GD1a. Journal of Neuroimmunology 113, 260-267 400 Khalili-Shirazi, A., Gregson, N., Gray, I., Rees, J., Winer, J. & Hughes, R. (1999) Antiganglioside antibodies 401 in Guillain-Barre syndrome after a recent cytomegalovirus infection. Journal of Neurology, 402 Neurosurgery & Psychiatry 66, 376-379 403 Kusunoki, S. W., H. J.; Jacobs, B. C. (2021) Antiglycolipid antibodies in Guillain-Barre and Fisher 404 syndromes: discovery, current status and future perspective. Journal of Neurology, 405 Neurosurgery & Psychiatry 92, 311-318 406 Laws, E. J., Harcourt-Brown, T. R., Granger, N. & Rose, J. H. (2017) An exploratory study into factors 407 influencing development of acute canine polyradiculoneuritis in the UK. Journal of Small Animal
- 408 *Practice* **58**, 437-443
- 409 Lopate, G., Choksi, R. & Pestronk, A. (2002) Severe sensory ataxia and demyelinating polyneuropathy
- 410 with IgM anti-GM2 and GalNAc-GD1A antibodies. *Muscle Nerve* 25, 828-836

- 411 Martinez-Anton, L., Marenda, M., Firestone, S. M., Bushell, R. N., Child, G., Hamilton, A. I., Long, S. N. &
- 412 Le Chevoir, M. A. R. (2018) Investigation of the Role of Campylobacter Infection in Suspected
- 413 Acute Polyradiculoneuritis in Dogs. Journal of Veterinary Internal Medicine 32, 352-360
- 414 McGonigal, R., Rowan, E. G., Greenshields, K. N., Halstead, S. K., Humphreys, P. D., Rother, R. P.,
- 415 Furukawa, K. & Willison, H. J. (2010) Anti-GD1a antibodies activate complement and calpain to
- 416 injure distal motor nodes of Ranvier in mice. Brain 133, 1944-1960
- 417 Northington, J. W. & Brown, M. J. (1982) Acute canine idiopathic polyneuropathy. A Guillain-Barre-like
- 418 syndrome in dogs. *Journal of the Neurological Sciences* **56**(2-3), 259-73
- 419 Northington, J. W., Brown, M. J., Farnbach, G. C. & Steinberg, S. A. (1981) Acute idiopathic
- 420 polyneuropathy in the dog. Journal of the American Veterinary Medical Association 179, 375-379
- 421 O'Hanlon, G. M., Plomp, J. J., Chakrabarti, M., Morrison, I., Wagner, E. R., Goodyear, C. S., Yin, X., Trapp,
- 422 B. D., Conner, J., Molenaar, P. C., Stewart, S., Rowan, E. G. & Willison, H. J. (2001) Anti-GQ1b
- 423 ganglioside antibodies mediate complement-dependent destruction of the motor nerve
- 424 terminal. Brain 124(Pt 5), 893-906
- 425 O'Hanlon, G. M., Veitch, J., Gallardo, E., Illa, I., Chancellor, A. M. & Willison, H. J. (2000) Peripheral
- 426 neuropathy associated with anti-GM2 ganglioside antibodies: clinical and immunopathological
- 427 studies. Autoimmunity **32**, 133-144
- 428 Olby, N. J. (2004) Tetraparesis. In: BSAVA Manual of Canine and Feline Neurology. Eds S. R. Platt and N. J.
- 429 Olby. British Small Animal Veterinary Association. pp 214-236
- 430 Ortiz, N., Rosa, R., Gallardo, E., Illa, I., Tomas, J., Aubry, J., Sabater, M. & Santafe, M. (2001) IgM
- 431 monoclonal antibody against terminal moiety of GM2, GalNAc-GD1a and GalNAc-GM1b from a
- 432 pure motor chronic demyelinating polyneuropathy patient: effects on neurotransmitter release.
- 433 Journal of Neuroimmunology 119, 114-123

434	Rupp, A., Galban-Horcajo, F., Bianchi, E., Dondi, M., Penderis, J., Cappell, J., Burgess, K., Matiasek, K.,
435	McGonigal, R. & Willison, H. J. (2013) Anti-GM2 ganglioside antibodies are a biomarker for acute
436	canine polyradiculoneuritis. Journal of the Peripheral Nervous System 18, 75-88
437	Rupp, A., Morrison, I., Barrie, J. A., Halstead, S. K., Townson, K. H., Greenshields, K. N. & Willison, H. J.
438	(2012) Motor nerve terminal destruction and regeneration following anti-ganglioside antibody
439	and complement-mediated injury: an in and ex vivo imaging study in the mouse. Experimental
440	Neurology 233 (2), 836-48
441	Santafe, M. M., Sabate, M. M., Garcia, N., Ortiz, N., Lanuza, M. A. & Tomas, J. (2005) Changes in the
442	neuromuscular synapse induced by an antibody against gangliosides. Annals of Neurology 57(3),
443	396-407
443 444	396-407 White, C. H., A. (2012) Immune-mediated thrombocytopenia. In: Canine and Feline Haematology and
443 444 445	396-407 White, C. H., A. (2012) Immune-mediated thrombocytopenia. In: Canine and Feline Haematology and Transfusion Medicine, Second edn. Ed 237-245. BSAVA, Gloucester
443 444 445 446	396-407 White, C. H., A. (2012) Immune-mediated thrombocytopenia. In: Canine and Feline Haematology and Transfusion Medicine, Second edn. Ed 237-245. BSAVA, Gloucester Willison, H. J. & Yuki, N. (2002) Peripheral neuropathies and anti-glycolipid antibodies. <i>Brain</i> 125(Pt 12),
443 444 445 446 447	396-407 White, C. H., A. (2012) Immune-mediated thrombocytopenia. In: Canine and Feline Haematology and Transfusion Medicine, Second edn. Ed 237-245. BSAVA, Gloucester Willison, H. J. & Yuki, N. (2002) Peripheral neuropathies and anti-glycolipid antibodies. <i>Brain</i> 125(Pt 12), 2591-2625
443 444 445 446 447 448	396-407 White, C. H., A. (2012) Immune-mediated thrombocytopenia. In: Canine and Feline Haematology and Transfusion Medicine, Second edn. Ed 237-245. BSAVA, Gloucester Willison, H. J. & Yuki, N. (2002) Peripheral neuropathies and anti-glycolipid antibodies. <i>Brain</i> 125(Pt 12), 2591-2625 Yoshikawa, K., Kuwahara, M., Morikawa, M., Fukumoto, Y., Yamana, M., Yamagishi, Y. & Kusunoki, S.
443 444 445 446 447 448 449	396-407 White, C. H., A. (2012) Immune-mediated thrombocytopenia. In: Canine and Feline Haematology and Transfusion Medicine, Second edn. Ed 237-245. BSAVA, Gloucester Willison, H. J. & Yuki, N. (2002) Peripheral neuropathies and anti-glycolipid antibodies. <i>Brain</i> 125(Pt 12), 2591-2625 Yoshikawa, K., Kuwahara, M., Morikawa, M., Fukumoto, Y., Yamana, M., Yamagishi, Y. & Kusunoki, S. (2018) Varied antibody reactivities and clinical relevance in anti-GQ1b antibody-related
443 444 445 446 447 448 449 450	396-407 White, C. H., A. (2012) Immune-mediated thrombocytopenia. In: Canine and Feline Haematology and Transfusion Medicine, Second edn. Ed 237-245. BSAVA, Gloucester Willison, H. J. & Yuki, N. (2002) Peripheral neuropathies and anti-glycolipid antibodies. <i>Brain</i> 125(Pt 12), 2591-2625 Yoshikawa, K., Kuwahara, M., Morikawa, M., Fukumoto, Y., Yamana, M., Yamagishi, Y. & Kusunoki, S. (2018) Varied antibody reactivities and clinical relevance in anti-GQ1b antibody-related diseases. <i>Neurology Neuroimmunology & Neuroinflammation</i> 5, e501

452