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 26 

ABSTRACT 27 

During opening of a new ocean magma intrudes into the surrounding 28 

sedimentary basins. Heat provided by the intrusions matures the host rock creating 29 

metamorphic aureoles potentially releasing large amounts of hydrocarbons. These 30 

hydrocarbons may migrate to the seafloor in hydrothermal vent complexes in 31 

sufficient volumes to trigger global warming, e.g. during the Paleocene Eocene 32 

Thermal Maximum (PETM). Mound structures at the top of buried hydrothermal vent 33 

complexes observed in seismic data off Norway were previously interpreted as mud 34 

volcanoes and the amount of released hydrocarbon was estimated based on this 35 

interpretation. Here, we present new geophysical and geochemical data from the Gulf 36 

of California suggesting that such mound structures could in fact be edifices 37 

constructed by the growth of black-smoker type chimneys rather than mud volcanoes. 38 

We have evidence for two buried and one active hydrothermal vent system outside the 39 

rift axis. The vent releases several hundred degrees Celsius hot fluids containing 40 

abundant methane, mid-ocean-ridge-basalt (MORB)-type helium, and precipitating 41 

solids up to 300 m high into the water column. Our observations challenge the idea 42 

that methane is emitted slowly from rift-related vents. The association of large 43 

amounts of methane with hydrothermal fluids that enter the water column at high 44 

pressure and temperature provides an efficient mechanism to transport hydrocarbons 45 

into the water column and atmosphere, lending support to the hypothesis that rapid 46 

climate change such as during the PETM can be triggered by magmatic intrusions into 47 

organic-rich sedimentary basins. 48 

 49 
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 51 

INTRODUCTION 52 

When testing climate models by hind casts for past prominent warming events it has 53 

become clear that significant drivers are missing (Panchuk et al., 2008; Carozza et 54 

al., 2011). Most striking, the reason for a 5-6°C global warming during the PETM 55 

remains elusive, although it is clear that more than 2000 Gt of carbon must have 56 

entered the atmosphere within a relatively short time span of a few thousand years 57 

(Dickens et al., 1995; Zachos et al., 2001). Light carbon isotope ratios were 58 

interpreted to suggest that large amounts of biogenic carbon were released through 59 

run-away hydrate dissociation events (Kennett et al., 2000). But recent studies call 60 

this interpretation in question (Dickens, 2011; Biastoch et al., 2011). Most 61 

alternative explanations are also marred by contradictions with available data 62 

(Higgins and Schrag, 2006). This includes the hypothesis of carbon mobilization by 63 

magmatic intrusions into carbon-rich continental margin sediments during the 64 

opening of the North Atlantic (Svensen et al., 2004), because it is difficult to 65 

understand how this process could have injected large amounts of carbon into the 66 

atmosphere within a short time. 67 

 68 

THE ACTIVE HYDROTHERMAL MOUND IN THE GUAYMAS BASIN 69 

New data acquired in the Guaymas Basin (Fig. 1, S1) support the ‘tectonic-magmatic’ 70 

explanation for warming during the PETM. Our data show a 1050 m-wide and 100 m-71 

high mound located above thick sediments approximately 1 km southeast of the 72 

northern rift axis of the Guaymas Basin that is emitting carbon-rich hydrothermal 73 

fluids (Fig. 2a). The mound and most of the southern flank of the Guaymas rift valley 74 
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are underlain by an approximately 100 m-thick chaotic seismic facies (50 to 150 ms 75 

two-way-travel time (TWT)) that is part of a widespread mass transport deposit. In the 76 

area of the mound another chaotic and low seismic amplitude seismic facies continues 77 

further downward to at least 2900 ms TWT or approximately 200-250 metres below 78 

seafloor. We interpret this facies as a conduit for the ascending hydrothermal fluids. 79 

At this depth high seismic amplitude reflections extend southward from below the rift 80 

axis into the basin. These reflections are likely caused by magmatic intrusions which 81 

occur throughout the Guaymas Basin (Lizarralde et al., 2010).  The bathymetric data 82 

(Fig. 1) also show the trace of a NE-SW striking normal fault that stretches to the 83 

mound and is dipping westward (Fig. S2). As it strikes in the same direction as the 84 

elongate mound axis it is probable that the shape of the mound is controlled by this 85 

fault. An approximately 20 m-thick chaotic seismic facies immediately below the base 86 

of the mound may indicate that hydrothermal seepage was initially occurring over a 87 

broader area and became more focused once fluid pathways had formed. The up to 88 

30°-steep flanks of the mound suggest a high internal angle of repose of the mound-89 

forming material. 90 

 91 

A 2.2 km-long profile of ten heat flow stations across the vent field and a 0.4 km-long 92 

profile of five stations along the mound consistently show heat flow values larger than 93 

0.3 W/m². The maximum heat flow on top of the mound is heterogeneous with values 94 

exceeding 10 W/m², whereas values below 3W/m2 were measured only 100 m away 95 

from the center (Supplementary Table S1). This heat flow pattern is similar to the heat 96 

flow distribution at sediment-free mid ocean ridges (Rona et al., 1996). The strong 97 

lateral heat flow variations indicate focused heat transport by hydrothermal fluids 98 

within narrow fluid pathways.  99 
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 100 

Samples recovered from the top of the mound show porous Fe-rich sulfides (Fig. S3) 101 

consisting predominantly of a boxwork of pyrrhotite crystals with minor pyrite, and 102 

marcasite, and rare Zn- and Cu-sulfides (e.g. sphalerite, chalcopyrite, isocubanite). 103 

These are accompanied by a small fraction of non-sulfide minerals (e.g., carbonates, 104 

opal-A and secondary Fe-oxyhydroxides). The mineralogy makes the samples from 105 

the northern rift axis similar to the massive sulfides recovered from the southern 106 

Guaymas Basin (Koski et al., 1985; Peter and Scott, 1988). However, they lack the 107 

abundant petroleum found in the southern rift samples. In analogy to black smoker 108 

deposits from Escanaba Trough the observed mineral assemblage suggests formation 109 

temperatures in the range of 270-330°C (Zierenberg et al., 1993). 110 

 111 

TIMING OF HYDROTHERMAL ACTIVITY 112 

A 5m-long gravity core was taken ~500 m away from the hydrothermal vent field 113 

(Fig. 3). The upper 4 m of the core consist of organic-rich, hemipelagic diatomaceous 114 

clay that is typical for most of Guaymas Basin (Damm et al., 1984). By contrast, the 115 

lowermost 1 m of core consists of coarse-grained hydrothermal deposits intercalated 116 

with clay lenses suggesting the mound to consist of hydrothermal deposits. Given Pb-117 

210-based sedimentation rates of 0.74 m/kyr inside the hydrothermal vent field 118 

(Station 40) and of 0.79 m/kyr just outside the hydrothermal vent field along the 119 

Northern Guaymas rift axis (Station 66), the hydrothermal deposits are likely 5 to 6 120 

kyr old. This is a minimum age estimate as older hydrothermal material likely exists 121 

below and towards the centre of the vent complex. However, we note that sill 122 

intrusions quickly cool off after emplacement (Jamtveit et al., 2004) and even thick 123 
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intrusions can only sustain hydrothermal systems for a few kyr. Thus, we infer that 124 

the mound structure must have formed during the last 5-10 kyr.  125 

ORIGIN OF THE HYDROTHERMAL FLUIDS 126 

We collected sea water in the vicinity of the hydrothermal field (Fig. 3) with Niskin 127 

bottles and measured the dissolved gases with an adapted membrane-inlet mass-128 

spectrometer (MIMS (Mächler et al., 2012)). The water is strongly enriched in helium 129 

(He) relative to the atmospheric equilibrium conditions (Fig. S5). At the flanks and 130 

the bottom of the rift valley He concentrations are similar to the concentrations found 131 

in the southern part of the Guaymas Basin(Lupton, 1979) whereas He in the water just 132 

above the active smokers is supersaturated by more than a factor of 4 (Fig. S6). This 133 

enrichment indicates that the vent injects He directly into the water column. The 134 

injected He is strongly enriched in 3He. The 3He/4He ratio (10.8.10-6, Fig. S6, Tab. S3) 135 

agrees with that of excess He from the southern part of the Guaymas Basin (Lupton, 136 

1979) pointing to the same general MORB source, and confirms that water circulation 137 

in the Guaymas Basin distributes He-rich water from the black smoker region 138 

throughout the basin (Marinone, 2003).  139 

 140 

Dissolved concentration of light hydrocarbons determined in water sampled at the 141 

smoker field (Fig. 3) by Niskin bottles are highly enriched (factor ≥ 105) compared to 142 

bottom water concentrations (Tab. S2). Calculated end member concentrations (i.e. 143 

CH4= 6.5 mM; Fig. S7) are similar to that of vent fluids measured in the Southern 144 

Guaymas Basin. There, CH4 generation was related to thermocatalytic degradation of 145 

organic matter in sediments intruded by magmatic rocks (CH4 ~6.3 mM, C1/C2+ 146 

~80)(Welhan and Lupton, 1987). The isotopic composition of methane (δ13C : -39 to -147 

14.9 ‰) at our site also indicates thermogenic methane most likely derived from local 148 
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sediments, however, with admixture of isotopically heavy methane (Fig. S8). This is 149 

consistent with high enrichment in Rn (Tab. S2). The heaviest δ13C-CH4 is likely 150 

related to an abiogenic methane source derived from water rock interaction (e.g., East 151 

Pacific Rise-type methane (Welhan and Lupton, 1987)). The presence of abiogenic 152 

hydrocarbon is also supported by the isotopic heavy composition of ethane and 153 

propane (McDermott et al., 2015; Proskurowski et al., 2008) (Fig. S9). Although the 154 

high-temperature aureole at the sill-sediment contact zone appears to be the plausible 155 

source for production of hydrocarbons by hydrothermal alteration of organic matter 156 

and abiogenic hydrocarbon release by hydrothermal alteration of magmatic rocks 157 

(McDermott et al., 2015), our concentration and isotope data do not exclude 13C-158 

enrichment of methane by (high-temperature) secondary oxidation within the 159 

sediments (Pan et al., 2006; Biddle et al., 2012). In fact, the strongest methane input 160 

from the smoker vent field exhibits an isotopically light δ13C-trend as it is postulated 161 

for the PETM event (Dickens, 2011), and any subsequent methane oxidation product 162 

would maintain this signal. We note that isotopically-light carbon of biogenic origin 163 

accounts for most of the CH4 that is emitted from the black smoker field, despite the 164 

presence of an isotopically-heavy hydrocarbon source of abiogenic, magmatic origin. 165 

Thus, we conclude that magmatic activity acts mainly as the heat source that fosters 166 

and triggers CH4 production and release from the post-rift sediments. While abiogenic 167 

methane along with MORB-source fluids is indeed emitted, it amounts only to a 168 

minor share of the total liberated CH4 (mixing ratio: 1 : 102 - 104, Fig. S8). 169 

 170 

COMPARISON TO MOUND STRUCTURES ON THE NORTH ATLANTIC 171 

MARGIN 172 
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The Guaymas mound resembles positive relief structures on the Paleocene-Eocene 173 

seafloor of the Vøring Basin off mid-Norway that have been interpreted as mud 174 

volcanoes previously (Svensen et al., 2004; Aarnes et al., 2015). Although deeply 175 

buried, the Norwegian mound structures have similar sizes and internal seismic 176 

appearance as the newly discovered active vent structure in the northern Guaymas 177 

Basin. The Norwegian mound structures are characterized by a transparent to 178 

stratified seismic facies confined by a mostly continuous, low-amplitude seismic 179 

reflection (Fig. 2b). The bases of these dome structures also have rugged topography 180 

with decreased seismic amplitudes and they overlie zones of disturbed seismic 181 

reflections with seismic amplitudes different from their host rocks. These seismic 182 

anomalies may indicate sediment alteration during vent activity (Fig. 2b). In addition 183 

to similar dimensions, the Norwegian and Guaymas structures both have very steep 184 

slopes (Fig. 2c) indicating comparable rheological properties which is uncommon 185 

even for the steepest mud volcanoes so far described for marine environments 186 

(Pinheiro et al., 2003). Seismic data are never fully conclusive – however, the striking 187 

morphological similarity and the location of the structures above seismically imaged 188 

fluid pathways indicates that the Guaymas vent may be a suitable analogue for the 189 

structures that formed at the beginning of the PETM. This link points to an important 190 

role of sediment alteration by ascending hydrothermal fluids and mineral precipitation 191 

in the formation of the mounds.  192 

 193 

IMPLICATIONS 194 

Hydrothermal systems injecting hot, CH4- and CO2-rich fluids high up into the water 195 

column are a much more efficient mechanism for releasing large amounts of carbon 196 

into the atmosphere than mud volcano-style cold seeps. Such focused ‘hot’ input 197 
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efficiently bypasses microbial benthic filters that may oxidize much of the CH4 to the 198 

less potent greenhouse gas CO2. Even more important is the observation that 199 

hydrothermal systems can inject CH4 and CO2 vigorously several hundred meters 200 

high up into the water column. In a shallow marine rift environment such as the North 201 

Atlantic volcanic rifted margins during the PETM (Planke et al., 2000), such gas 202 

plumes may directly reach the atmosphere. Thus, the new observations support the 203 

hypothesis that the PETM was caused by the vigorous and wide spread magmatic 204 

systems of the North Atlantic large igneous province (Svensen et al., 2004) rather 205 

than by large-scale hydrate dissociation. 206 

 207 
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 311 

 312 

FIGURE CAPTIONS 313 

Figure 1. The Guaymas Basin is one of the rift basins formed by opening of the Gulf 314 

of California in NW-SE direction. The recently discovered black smoker is located 315 

just south of the northern rift axis. 316 

 317 

Figure 2. Comparison of the seismic signature of the active black smoker (a) and an 318 

extinct structure in the Guaymas (b and c) and extinct structures observed in the 319 

Vøring Basin during the opening of the Northeast Atlantic off Norway (d and e). 320 

Width (f) and height (g) of the active black smoker in the Guaymas Basin are similar 321 

to structures in the Vøring Basin as indicated by the red line in the blue histograms. 322 

Green lines, average width and height. MTD, mass transport deposit. CSF, chaotic 323 

seismic facies underneath the smoker. Vertical axis on all seismic images shows two 324 

way travel time in ms. 325 

 326 

Figure 3. Three-dimensional view of the mound structure discovered in the Guaymas 327 

Basin. Station IDs of CTD tracks (green lines), HyBis dives (red lines), gravity core 328 

(yellow triangle), and in situ sensor data (pCH4 (µatm) / pCO2 (µatm) / temperature 329 

(°C)) are labelled. 330 

 331 

Figure 4. Schematic diagram illustrating the processes at the active vent site. The 332 

green area indicates under-mature sediments from which organic carbon can be 333 
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mobilized by the heat transfer from the magmatic intrusions limiting the depth within 334 

which the bulk of the fluids may originate. MTD: Mass transport deposit.  335 

 336 

1GSA Data Repository item 201Xxxx, including supplementary figures and references 337 

as well as additional information on heat flow measurements, geochemical analysis of 338 

sediment pore water and water column samples, determination of the sedimentation 339 

rate and further seismic information, is available online at 340 

www.geosociety.org/pubs/ft20XX.htm, or on request from editing@geosociety.org or 341 

Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 342 

 343 
 344 

GSA Data Repository Materials 345 

 346 

Seafloor temperature measurements 347 

The temperature gradients were measured using a 5 m-long temperature-gradient 348 

lance with six miniaturized temperature data loggers (MTL). These loggers measured 349 

the temperature at a sampling rate of 1 s with an absolute accuracy of approximately 350 

0.1 K (Pfender and Villinger 2002). The relative temperature resolution is 0.001 K. In 351 

addition, at six sites a 5 m-long gravity corer with attached MTLs was used.  An 352 

additional logger at the top of both instruments measured the bottom water 353 

temperature as a reference.  All measurements were tilt corrected. The derived 354 

temperature data were not corrected for sedimentation and terrain effects.  355 

 356 

We have measured the thermal conductivity on recovered core material that was 357 

sampled at or close to the depth of the measured temperature positions using the KD2 358 

Pro Needle Probe Instrument. For the samples without a thermal-conductivity 359 
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measurement, i.e. those without cores, we assumed a constant thermal conductivity of 360 

0.7 W/m K. The data were processed using the method published by Hartmann and 361 

Villinger (2002). This method determines undisturbed sediment temperatures from the 362 

observed temperature decays.  363 

Heat flow values were calculated by using Fourier’s Law as the product of the 364 

temperature gradient and thermal conductivity. 365 

 366 

We used Bullard method in which the integrated thermal resistance is plotted as a 367 

function of temperature. Usually this relationship is linear. However, transient 368 

processes such as high sedimentation rates, seasonal temperature fluctuations, focused 369 

advection processes or heat generation may cause non-linear deviations. Fourteen out 370 

of the 15 presented heat flow sites show a linear relationship between temperatures as 371 

function of integrated thermal resistance. Just one site shows non-linear relation at 372 

shallow sediment depth. 373 

 374 

We interpret the overall high heat flow values with large lateral variations as a result 375 

of hydrothermal fluid movements along narrow pathways.  The high temperature 376 

gradient (Supplementary Table S1) excludes conductive heat transfer. Conductive 377 

heat transfer cannot explain either the large lateral heat flow variations on a spatial 378 

scale of 100 m. This indicates that there is rigorous hydrothermal venting. All of the 379 

SO241-70 sites show advective components. Three out of these four are interpretable 380 

as discharge areas (in the northern and central part of the graben), but the Bullard plot 381 

of (Site SO241-70P04) shows a downward concave curve at shallow depth, which 382 

may be the result of seawater recharge into the crust before it is being heated up.  383 

 384 
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Geochemistry 385 

Water samples were taken by using a towed SBE9-CTD rosette device equipped with 386 

11 Niskin bottles (a 10 l) and additional HydroC-pCH4 and -pCO2, turbidity, and 387 

bottom distance sensors (modified after Schmidt et al., 2015). CTD-Stations VCTD09 388 

(and -10) were towed directly above the hydrothermal vent field in variable distance 389 

to seafloor (Fig. 3). However, only VCTD09 data is shown in Table S2 as it exhibit 390 

notable inorganic variations of hydrothermal tracers in water masses in 5-20 m 391 

distance to seafloor. Niskin bottles were closed when temperature, pCO2 and turbidity 392 

suddenly increased indicating hydrothermal plume anomalies. The Niskin bottles 393 

were sub-sampled directly after CTD retrieval for inorganic element chemistry, 394 

nutrients, partial pressures of dissolved gases and stable and radio-isotope 395 

characteristics (Tab. S2) and water samples were analysed onboard for nutrient 396 

concentrations. Sub-samples taken for the analysis of major cations (Na+, K+, Li+, 397 

Mg2+, Ca2+, Sr2+, Ba2+) as well as B and Si were measured in the shore-based 398 

laboratory at GEOMAR Helmholtz-Centre for Ocean Research by ICP-OES 399 

(http://www.geomar.de/en/research/fb2/fb2-mg/benthic-biogeochemistry/mg-400 

analytik/icp-aes/). ICP sub-samples were acidified directly after sampling to prevent 401 

any precipitation of minerals. The elements Ba, Mn, Si, and Li are enriched compared 402 

to seawater values. The concentration ranges between 128 – 1766 nM for Ba, 0.02 to 403 

23.9 µM for Mn, 0.16 – 0.69 mM for Si and 23.1 – 59.2 µM for Li (Table S2). All 404 

elements show the strongest anomalies (mostly enrichment) in bottle 12 (VCTD09). 405 

Mg shows a slight concentration decrease compared to seawater. The strongest 406 

depletion of Mg (51 mM) was also encountered in bottle 12. TIMS measured 87Sr/86Sr 407 

ratios normalized on SRM-987 (0.710248) ranges between 0.708906 and almost 408 

http://www.geomar.de/en/research/fb2/fb2-mg/benthic-biogeochemistry/mg-analytik/icp-aes/
http://www.geomar.de/en/research/fb2/fb2-mg/benthic-biogeochemistry/mg-analytik/icp-aes/


Berndt et al.: Rifting under steam        

modern seawater (0.709176) matching 0.709170 (± 1 E-5, typical 2 SEM this session) 409 

showing the lowest value in bottle 12 which was sampled closest to the active vent. 410 

 411 

We calculated the amount of hydrothermal fluids in the Guaymas Basin bottom water 412 

using a simple two-end member mixing model between the seawater and primary 413 

hydrothermal fluid which was assumed to be void of Mg. Based on this we calculated 414 

the maximum percentage of the hydrothermal fluid in the water samples. The lowest 415 

Mg concentration of 51 mM in the water sample of bottle 12 yields a hydrothermal 416 

fluid percentage of ~6 %. Based on this we determined the hydrothermal end member 417 

composition of the enriched elements in the sampled water column and compared 418 

those to the concentrations measured at the southern Guaymas spreading center by 419 

Von Damm et al. (1985).  420 

 421 

Hydrothermal end member concentrations for Si and Ba yielded 9.36 mM and 28 µM, 422 

respectively and fall well into the end member concentration ranges observed by Von 423 

Damm et al. (1985) in the southern Guaymas Basin (Si: 9 - 14 mM; Ba: 7 – 42 µM). 424 

Si concentration is at the lower end of the concentration range and might point to a 425 

lower hydrothermal temperature or Si precipitation during ascent or after fluid 426 

discharge. Hydrothermal end member concentrations calculated for Mn yield 420 µM, 427 

which is higher than the concentrations observed in the southern Guaymas 428 

hydrothermal fluids, which range between 128 and 236 µM (Von Damm et al., 1985). 429 

Von Damm et al. (1985) propose the precipitation of alabandite (MnS) as an 430 

explanation for the observed low values. Li, in contrast, shows slightly lower 431 

calculated end member concentrations (584 µM) compared to the southern Guaymas 432 

fluids, which range between 630 and 1076 µM. These lower values might be 433 
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explained by a Li sink in the sediments through which the hydrothermal fluids 434 

percolate.  435 

 436 

Concentrations of dissolved He and Ne (as well as Ar, Kr and Xe) and the 3He/4He, 437 

22Ne/20Ne, 36Ar/40Ar isotope ratios in water samples taken in copper tubes were 438 

analysed as routine samples in the noble gas laboratory of the Swiss Federal Institute 439 

of Technology Zurich (ETHZ) and the Swiss Federal Institute of Aquatic Science and 440 

Technology (Eawag). Details on sampling and of the experimental method are given 441 

in Beyerle et al. (2000). He and Ne concentrations are covered with an overall 442 

standard error of ±2%, the 3He/4He ratio has a standard error of 1%. 443 

 444 

For the on-board analysis concentrations of dissolved He, Ar, Kr, N2, O2, CO2, and 445 

CH4 during the expedition, we used a portable gas-equilibrium membrane-inlet mass-446 

spectrometric system (GE-MIMS) similar to that described in Mächler et al. (2012). 447 

Whereas the original GE-MIMS was designed for gas analysis in continuous high-448 

volume water flows through a large membrane contactor, the GE-MIMS used here 449 

was modified to allow analysis of an 8 l water sample taken from a 10 l Niskin 450 

sampler within 10 min (Brennwald et. al., 2015, a, b). To allow reliable gas analysis 451 

in this limited amount of water, the gas consumption from the membrane contactor 452 

into of the MS was reduced to 0.1 ccSTP/min (> 2 ccSTP/min in the original GE-453 

MIMS). This allowed maintaining gas/water solubility equilibrium in miniature 454 

membrane contactor modules (two LiquiCel MicroModules operated in parallel) at a 455 

total water throughput of 0.5 L/min (> 5 L/min in the original GE-MIMS). The low 456 

gas consumption was achieved by replacing the capillary flow resistance followed by 457 

a split-flow/aperture gas inlet to the MS vacuum by a new splitless design using a 458 
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single capillary (9 m long, 0.1 mm inner diameter, Brennwald et al., 2015b). The gas 459 

outflow from the capillary is analysed in a quadrupole MS (Stanford Research 460 

Systems RGA 200) operated in dynamic mode. As the membrane contactors operate 461 

at solubility equilibrium, the partial pressures of the noble gases N2 and O2 in the gas 462 

phase of the membrane contactors are similar to those in air. The GE-MIMS data for 463 

these species were therefore calibrated using ambient air as a reference gas (< 5 % 464 

accuracy, 1 σ). The partial pressures of CO2 and CH4 are reported as un-calibrated 465 

raw data.  466 

 467 

In order to determine the variation of excess amounts of the noble gas radon 468 

(222Rn(exc.)) close to the hydrothermal vent, selected CTD samples were measured on 469 

board by Liquid Scintillation Counting (LSC). Using a portable Hidex TriathlerTM 470 

system and MaxiLightTM as scintillation cocktail for the measurement of total 222Rn 471 

content uncertainties of 15% (SD) are typical for the counting statistics. After more 472 

than 3 months storage re-measurements were conducted at GEOMAR to correct for 473 

the fraction of total 222Rn potentially provided by the decay of dissolved 226Ra. The 474 

analytical procedure followed the approach described by Purkl and Eisenhauer 475 

(2004). The maximum sample size was restricted to 1.5 l combined with 20 ml of 476 

LSC cocktail, which is close to the maximum extraction efficiency as recently 477 

deduced by Schubert et al. (2014). The re-measurements for supported 222Rn 478 

contribution did not reveal concentrations above the detection limit of the applied 479 

LSC setup. Consequently, a simple, robust, and reliable semi-quantitative measure on 480 

the relative enrichment in 222Rn(exc.) can be presented in Tab. S2 in terms of 481 

enrichment factors compared to bottle 5. Since bottle 5 shows the lowest 222Rn 482 

activity in dpm/L (decay per minute/liter) of the investigated CTD casts it provides 483 
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the best available approximation to water column background 222Rn activity and was 484 

set as reference point (Tab. S2). The lowest published 222Rn data (0.1 and 0.2 dpm/L) 485 

of Santos et al. (2011) for central waters of the Concepcion Bay (West of our study 486 

area) and of Prol-Ledesma et al. (2013) for the northern Gulf of California (Wagner 487 

and Consag basins, down to zero dpm/100L) may be assumed as typical background 488 

values and are similar to the lowest values that we have encountered (bottle 5, 1768 489 

m: 0.17 dpm/L (± 0.1, SD; calibration pending). However, applying the same 490 

approach to the sample recovered closest to the vent (bottle 12, 1773 m) yielded the 491 

maximum 222Rn(exc.) activity of 13.8 dpm/L for our data set. Independent from exact 492 

quantitative setup calibrations, this approach provides a robust enrichment factor for 493 

222Rn(exc.) in the same order of magnitude as deduced for He in this study (Tab. S2). 494 

However, almost twice as high levels of 222Rn(exc.) of 2430 dpm/100L were reported 495 

for the hydrothermal impact on the waters of the northern Gulf of California in the 496 

Wagner and Consag basins (Prol-Ledema et al., 2013). There they attribute the 497 

positive anomalies of 222Rn to a fault system coinciding with the presence of strong 498 

flares suggesting hydrothermal circulation in a thick sediment cover and revealing the 499 

location of up-flow areas. 500 

 501 

Dissolved hydrocarbons (C1-C3) from individual water samples were released 502 

onboard by equilibration of 112 ml water samples in a septum-sealed 117 ml 503 

headspace vial at room temperature (He-head space, 50 µl HgCl2-solution added). 504 

Hydrocarbon composition of the head space gas was determined by using a Thermo 505 

Trace gas chromatograph (GC) equipped with flame ionization detector (carrier gas: 506 

He 5.0; capillary column: RT Alumina Bond-KCl, column length: 50 m; column 507 

diameter: 0.53 µm). Precision of ±1-3% was achieved when measuring standard 508 
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hydrocarbon mixtures. Molar hydrocarbon concentrations in Table S2 were calculated 509 

by applying Henry coefficients according to Mackay and Shiu (2006). 510 

 511 

Stable carbon isotope ratios of methane and higher hydrocarbons (C1-C3) from water 512 

samples were measured by using continuous flow GC combustion - Isotope Ratio 513 

Mass Spectrometry. Hydrocarbons were separated in a Thermo Trace GC (carrier gas: 514 

He; packed column: ShinCarbon, 1.5 m). The subsequent conversion of hydrocarbons 515 

to carbon dioxide was conducted in a Ni/Pt combustion furnace at 1150°C. The 516 

13C/12C-ratios of the produced CO2 were determined by a Thermo MAT253 isotope 517 

ratio mass spectrometer. All isotope ratios are reported in the δ-notation with respect 518 

to Vienna Pee Dee Belemnite (VPDB, analytical precision 0.5 ‰). 519 

 520 

Sedimentation Rates 521 

The wet sediment was weighed, freeze dried at -80°C and reweighed to determine the 522 

water content, then ground in a mortar. Radionuclides were then measured as follows. 523 

Two HPGe detectors were engaged for 210Pb and 226Ra analysis including GMX-type 524 

(ORTEC GMX-120265) and well-type (ORTEC GWL-100230) detectors which 525 

interfaced to a digital gamma-ray spectrometer (DSPecPlus™). For the GMX-type 526 

detector, absolute counting efficiencies for various photon energies were calibrated 527 

using IAEA reference materials 327A, 444 spiked soil, CU-2006-03 spiked soil, 528 

RGTh and RGU for sample weight at 100g as a reference, and coupled with an in-529 

house secondary standard for various masses (from 10 to 250 g) to calibrate the effect 530 

of sample mass on the attenuation of γ-rays of various energies. For the well-type 531 

detector, the counting efficiencies were calibrated by IAEA-RGTh and RGU from 0.5 532 

to 3.5 g. 214Pb was used as an index of 226Ra (supported 210Pb) whose activity 533 
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concentration was subtracted from that of the measured total 210Pb to obtain excess 534 

210Pb (210Pbex). The 210Pb and 214Pb activities were quantified based on photon peaks 535 

centered at 46.52 and 351.99 keV, respectively. The activities of radionuclides were 536 

decay-corrected to the date of sample collection. All radionuclide data were calculated 537 

on salt-free dry weight basis. Error bars represent ±1σ around the mean based on 538 

counting statistics and standard propagation of errors.  539 

 540 
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 591 

 592 

Figure S1: Seismic base map showing the distribution of available 2D seismic data in 593 

the Guaymas Basin and major structural elements (after Padilla y Sánchez et al., 594 

2013). Central and Southern gulf spreading centers are labelled, G–Guaymas, C–595 

Carmen, F–Farallon, NP–North Pescadero, SP–South Pescadero, A–Alarcon, EPR–596 

East Pacific Rise. 597 

  598 

 599 
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  600 

Figure S2: 2D seismic line showing the regional mass transport deposit (MTD) and 601 

interpreted sill intrusions (yellow polygons). 602 

 603 

 604 

 605 

Figure S3: Photograph of a massive sulfide sample collected on the southern summit 606 

of the mound structure. 607 

 608 
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 609 

 610 

Figure S4: Video still of one of the seven active vents on top of the mound structure. 611 

 612 
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 613 

 614 

Figure S5: MIMS-determination of dissolved (4)He, CH4 and CO2 partial pressures 615 

(mbar) measured at, above and in the vicinity of the hydrothermal vent site (Stxy: 616 

station number xy, BS: 'Black Smoker - within the hydrothermal field (stations: 39, 617 

52)', above BS: 'free water column above vent sites (station 62)', trough: samples in 618 

the deep trough of the northern Guaymas Basin (station 31)). 619 

The partial pressures of CO2 and CH4 are reported as un-calibrated raw MIMS 620 

detector signals. 621 
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 622 

 623 

Figure S6: Dissolved He and Ne concentrations measured at the hydrothermal vent 624 

site in comparison to earlier noble gas measurements in the southern part of the 625 

Guaymas Basin (Lupton, 1979). The samples from the vent site fall on the line 626 

defined by the earlier measurements from the southern Guaymas Basin and thus carry 627 

isotopic light He (3He/4He: 10.8.10-6, Lupton, 1979) from the same general MORB 628 

source. For comparison noble gas (isotope) concentrations are reported and 629 

normalized as in Lupton, 1979: 630 

 631 

 632 
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 633 

where Xm depicts the measured concentration of X, and XASW is the expected 634 

atmospheric equilibrium concentration (atmospheric saturated water: ASW) for the 635 

given physical condition of the water. As iHeASW and NeASW only barely change with 636 

varying temperature and salinity the NeASW/iHeASW ratio is virtually independent of 637 

the actual physical condition of the water. Stxy: 'station number, 'Bz': bottle number. 638 

Station 52: Black Smoker site, Station 31: open water column of the trough. 639 
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 640 

 641 

 642 

Figure S7: Hydrocarbon end member concentrations (methane, ethane, propane) 643 

calculated for hydrothermal fluids venting at the smoker area. 644 

 645 
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 646 

 647 

Figure S8: Dissolved methane concentration and carbon isotope data (red dots) 648 

determined in bottom water samples from the smoker area. Grey dots indicate mixing 649 

curves of a hydrothermal end member methane A (δ13C =-39 ‰, 7nM) with 650 

admixture of a second methane-containing fluid B and B’ (δ13C =-15 ‰), 651 

respectively, at variable dilution factors of 1:100 and 1:10,000 compared to fluid A. 652 

 653 

 654 
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 655 

 656 

Figure S9: Stable carbon isotope composition of hydrocarbons dissolved in venting 657 

hydrothermal fluids (red dots) indicate both hydrocarbons derived from organic 658 

matter degradation influenced by volcanic heat intrusion (e.g. Cerro Prieto volcanic 659 

complex; Des Marais, 1988), and abiogenic hydrocarbon formation (e.g. Lost City 660 

HF, Proskurowski et al., 2008; Von Damm Vent, McDermott et al., 2015). 661 
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 662 

Figure S10: Calculated heat flow for Site SO241-70P04 (top) and SO241-60P01 663 

(bottom) using the Bullard Plot method. Black dots represent sensors used to calculate 664 

the heat flow whereas unfilled dots represent the sensor positions, which were not 665 

used for any calculations because they were affected by surface artifacts such as 666 

incomplete penetration of the lance. 667 

 668 
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  669 

 670 

Figure S11:  210Pbex values plotted versus (A) sediment depth and (B) cumulative 671 

mass at Stations 40 and 66. Lines and equations represent linear-best fit functions and 672 

their data fit (R2). Station 40 has a good linear fit from the surface to the deepest 673 

layers sampled, indicating a relatively steady sedimentation rate over the sampling 674 

interval. By contrast, Station 66 has two best-fit lines, one to match samples from the 675 

top 6 cm (cyan), and a second one to match samples from 6-12 cm (orange). Samples 676 

from the top 6 cm at Station 66 show an only minor decrease in 210Pbex, presumably 677 

due to vertical sediment mixing by macrofauna. The samples from 6-12 cm at Station 678 

66 show a stronger 210Pbex decrease with depth that more likely reflect the 679 

sedimentation rate of the site and were thus used for calculations of sedimentation 680 
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rates.  While the profiles of 210Pbex show good agreement independent of the y-axis 681 

units at Station 40, there is a considerable difference between 210Pbex profiles at 682 

Station 66 depending on whether sediment depth or cumulative mass are used as y-683 

axis units. This discrepancy is likely an artefact of core compaction during sediment 684 

sampling. We consider 210Pbex relationships with cumulative mass, which correct for 685 

compaction effects during coring, to be more reliable (especially at Station 66), and 686 

thus report sedimentation rates that have been corrected for cumulative mass in this 687 

article.688 
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Supplementary Tables 689 

Table S1: Heat flow measurements carried out during SO241 690 

 691 

692 
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Table S2:  Geochemical data of the water column sampled above the black smoker  
  

Bottle Latitude Longitude Depth Temperature Salinity Methane (C1) Ethane 
(C2) Propane (C3) δ13C-C1 δ13C-C2 δ13C-C3 222Rn(exc.)

a Mn Mg Sr 87Sr/86Sr Si Ba Li 

  N W (m) (°C) (‰) (nM) (nM) (nM) (‰ VPDB) (‰ VPDB) (‰ VPDB) enrich. fact. (µmol/l) (mmol/l) (µmol/l)   (mmol/l) (nmol/l) (µmol/l) 

1 27.41258 -111.3870 1504 3.1 34.60               

2 27.41284 -111.38696 1766 2.9 34.61 1366.1 3.7 0.8 -33.8    0.02 53.0 88.6  0.16 128 23.1 

3 27.41288 -111.38696 1767 2.9 34.61 
   

   1.7 <d.l. 54.1 88.7 
0.70917

0 0.18 145 24.9 

4 27.41204 -111.38732 1768 4.1 34.55 508.2 0.8 0.4 -26.4    0.14 52.8 88.2  0.18 147 23.3 

5 27.41204 -111.38732 1768 4.1 34.64 
   

   1.0 <d.l. 54.3 89.2 
0.70916

7 0.18 143 24.9 

6 27.4121 -111.38732 1768 4.3 34.68 66885.7 171.7 22.9 -36.8 -9.9 -15.8  0.49 52.9 88.4  0.18 451 23.8 

8 27.4121 -111.38732 1768 4.4 34.62 
   

   16.2 3.79 53.9 89.6 
0.70912

9 0.26 946 29.0 

9 27.41212 -111.38734 1772 6.9 34.64 
26801.6 59.1 7.8 -37.7 -10.5   1.33 53.9 88.6 0.70915

6 0.20 410 26.5 26010.5 57.4 8.2 -36.2    

10 27.41214 -111.3872 1775 17.4 34.96 
22987.6 54.2 7.1 -39.0 -11.1  4.5 1.18 53.9 88.9 0.70915

9 0.20 383 26.3 22466.2 52.1 6.8 -38.7   

11 27.41214 -111.3872 1775 28.0 34.17 18684.1 42.6 6.1 
-14.9 

-10.7 -14.4 
 

1.10b 52.9b 88.3b  0.19b 353b 24.7b 
-14.9  

12 27.41212 -111.38718 1773 12.1 34.26 

360284.0 849.3 137.4  -10.2 -15.0 
81.5 23.9 51.0 90.6 0.70890

6 0.69 1766 59.2 
400801.8 

893.0 110.2 -37.0   
1009.3 129.4 -37.8     

aEnrichment factor of 222Rn relative to the lowest value measured on this CTD station 
(bottle 5). See text for details.               
bInorganic geochemistry values are a mixture of bottle 10 (~20%) and 
bottle 11 (~80%)               



 

 

Table S3: Isotope ratios of He and Ne reported as the percentage deviations of 3He/Ne and 695 
4He/Ne from the solubility ratios (see Lupton (1979) for details). 696 
 697 

Location Bottle Latitude Longitude 
∆(3He/Ne) 

[%]  
∆(4He/Ne) 

[%] 
  N W   
Black Smoker 6 27.4121 -111.38732 2937 380 
Black Smoker 9 27.41212 -111.38734 936 116 
Background trough bottom 2 37.30207 -111.52433 71 9 
Background trough shoulder 7 37.30207 -111.52433 76 11 

 698 
 699 
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