22 research outputs found

    Razvoj i vrednovanje plutajućih tableta norfloksacina s produljenim zadržavanjem u želucu

    Get PDF
    Floating matrix tablets of norfloxacin were developed to prolong gastric residence time, leading to an increase in drug bioavailability. Tablets were prepared by the wet granulation technique, using polymers such as hydroxy propyl methylcellulose (HPMCK4M, HPMCK100M) and xanthan gum. Tablets were evaluated for their physical characteristics viz., hardness, thickness, friability, and mass variation, drug content and floating properties. Further, tablets were studied for in vitro drug release characteristics for 9 hours. The tablets exhibited controlled and prolonged drug release profiles while floating over the dissolution medium. Non-Fickian diffusion was confirmed as the drug release mechanism from these tablets, indicating that water diffusion and the polymer rearrangement played an essential role in drug release. The best formulation (F4) was selected based on in vitro characteristics and was used in vivo radiographic studies by incorporating BaSO4. These studies revealed that the tablets remained in the stomach for 180 ± 30 min in fasting human volunteers and indicated that gastric retention time was increased by the floating principle, which was considered desirable for absorption window drugs.Razvijene su plutajuće tablete norfloksacina koje se produljeno zadržavaju u želucu i time povećavaju bioraspoloživost. Tablete su pripravljene metodom vlažne granulacije, koristeći hidroksipropil metilcelulozu (HPMCK4M, HPMCK100M) i ksantan gumu. Tabletama su određena fizikalna svojstva (čvrstoća, debljina, lomljivost i varijacija mase) te sadržaj ljekovite tvari i plutajuća svojstva. Nadalje, praćeno je oslobađanje ljekovite tvari in vitro tijekom 9 h. Uočeno je da je oslobađanje kontrolirano i produljeno te da tablete plutaju u ispitivanom mediju. Mehanizam oslobađanja nije slijedio Fickov zakon, što ukazuje da difuzija vode i promjene u strukturi polimera imaju bitnu ulogu u oslobađanju ljekovite tvari. Najbolja formulacija (F4) in vitro uporabljena je s dodatkom barijevog sulfata za radiografska ispitivanja in vivo. Ispitivanja na volonterima koji su apstinirali od hrane pokazala su da primjena plutajućih tableta produljuje vrijeme zadržavanja u želucu na 180 ± 30 min

    Unravelling the mechanisms that determine the uptake and metabolism of magnetic single and multicore nanoparticles in a Xenopus laevis model.

    Get PDF
    Multicore superparamagnetic nanoparticles have been proposed as ideal tools for some biomedical applications because of their high magnetic moment per particle, high specific surface area and long term colloidal stability. Through controlled aggregation and packing of magnetic cores it is possible to obtain not only single-core but also multicore and hollow spheres with internal voids. In this work, we compare toxicological properties of single and multicore nanoparticles. Both types of particles showed moderate in vitro toxicity (MTT assay) tested in Hep G2 (human hepatocellular carcinoma) and Caco-2 (human colorectal adenocarcinoma) cells. The influence of surface chemistry in their biological behavior was also studied after functionalization with O,O′-bis(2-aminoethyl) PEG (2000 Da). For the first time, these nanoparticles were evaluated in a Xenopus laevis model studying their whole organism toxicity and their impact upon iron metabolism. The degree of activation of the metabolic pathway depends on the size and surface charge of the nanoparticles which determine their uptake. The results also highlight the potential of Xenopus laevis model bridging the gap between in vitro cell-based assays and rodent models for toxicity assessment to develop effective nanoparticles for biomedical applications

    PEG/Dextran Double Layer Influences Fe Ion Release and Colloidal Stability of Iron Oxide Nanoparticles

    Get PDF
    Abstract Despite preliminary confidence on biosafety of polymer coated iron oxide nanoparticles (SPIONs), toxicity concerns have hampered their clinical translation. SPIONs toxicity is known to be due to catalytic activity of their surface and release of toxic Fe ions originating from the core biodegradation, leading to the generation of reactive oxygen species (ROS). Here, we hypothesized that a double-layer polymeric corona comprising of dextran as an interior, and polyethylene glycol (PEG) as an exterior layer better shields the core SPIONs. We found that ROS generation was cell specific and depended on SPIONs concentration, although it was reduced by sufficient PEG immobilization or 100 µM deferoxamine. 24 h following injection, PEGylated samples showed reduction of biodistribution in liver, heterogenous biodistribution profile in spleen, and no influence on NPs blood retention. Sufficient surface masking or administration of deferoxamine could be beneficial strategies in designing and clinical translation of future biomedical SPIONs

    Glucose metabolism links astroglial mitochondria to cannabinoid effects

    No full text
    Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses <sup>1-5</sup> . By contrast, astrocytes are under neuronal control through specific neurotransmitter receptors <sup>5-7</sup> . However, whether the activation of astroglial receptors can directly regulate cellular glucose metabolism to eventually modulate behavioural responses is unclear. Here we show that activation of mouse astroglial type-1 cannabinoid receptors associated with mitochondrial membranes (mtCB <sub>1</sub> ) hampers the metabolism of glucose and the production of lactate in the brain, resulting in altered neuronal functions and, in turn, impaired behavioural responses in social interaction assays. Specifically, activation of astroglial mtCB <sub>1</sub> receptors reduces the phosphorylation of the mitochondrial complex I subunit NDUFS4, which decreases the stability and activity of complex I. This leads to a reduction in the generation of reactive oxygen species by astrocytes and affects the glycolytic production of lactate through the hypoxia-inducible factor 1 pathway, eventually resulting in neuronal redox stress and impairment of behavioural responses in social interaction assays. Genetic and pharmacological correction of each of these effects abolishes the effect of cannabinoid treatment on the observed behaviour. These findings suggest that mtCB <sub>1</sub> receptor signalling can directly regulate astroglial glucose metabolism to fine-tune neuronal activity and behaviour in mice
    corecore