57 research outputs found

    The ALHAMBRA survey : Estimation of the clustering signal encoded in the cosmic variance

    Full text link
    The relative cosmic variance (σv\sigma_v) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv\sigma_v measured in the ALHAMBRA survey. We measure the cosmic variance of several galaxy populations selected with BB-band luminosity at 0.35z<1.050.35 \leq z < 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv\sigma_v with the cosmic variance of the dark matter expected from the theory, σv,dm\sigma_{v,{\rm dm}}. This provides an estimation of the galaxy bias bb. The galaxy bias from the cosmic variance is in excellent agreement with the bias estimated by two-point correlation function analysis in ALHAMBRA. This holds for different redshift bins, for red and blue subsamples, and for several BB-band luminosity selections. We find that bb increases with the BB-band luminosity and the redshift, as expected from previous work. Moreover, red galaxies have a larger bias than blue galaxies, with a relative bias of brel=1.4±0.2b_{\rm rel} = 1.4 \pm 0.2. Our results demonstrate that the cosmic variance measured in ALHAMBRA is due to the clustering of galaxies and can be used to characterise the σv\sigma_v affecting pencil-beam surveys. In addition, it can also be used to estimate the galaxy bias bb from a method independent of correlation functions.Comment: Astronomy and Astrophysics, in press. 9 pages, 4 figures, 3 table

    The ALHAMBRA survey: evolution of galaxy spectral segregation

    Get PDF
    We study the clustering of galaxies as a function of spectral type and redshift in the range 0.35<z<1.10.35 < z < 1.1 using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg2^2 in 7 fields, after applying a detailed angular selection mask, with accurate photometric redshifts [σz<0.014(1+z)\sigma_z < 0.014(1+z)] down to IAB<24I_{AB} < 24. From this catalog we draw five fixed number density, redshift-limited bins. We estimate the clustering evolution for two different spectral populations selected using the ALHAMBRA-based photometric templates: quiescent and star-forming galaxies. For each sample, we measure the real-space clustering using the projected correlation function. Our calculations are performed over the range [0.03,10.0]h1[0.03,10.0] h^{-1} Mpc, allowing us to find a steeper trend for rp0.2h1r_p \lesssim 0.2 h^{-1} Mpc, which is especially clear for star-forming galaxies. Our analysis also shows a clear early differentiation in the clustering properties of both populations: star-forming galaxies show weaker clustering with evolution in the correlation length over the analysed redshift range, while quiescent galaxies show stronger clustering already at high redshifts, and no appreciable evolution. We also perform the bias calculation where similar segregation is found, but now it is among the quiescent galaxies where a growing evolution with redshift is clearer. These findings clearly corroborate the well known colour-density relation, confirming that quiescent galaxies are mainly located in dark matter halos that are more massive than those typically populated by star-forming galaxies.Comment: 14 pages, 9 figures, accepted by Ap

    Stellar populations of galaxies in the ALHAMBRA survey up to z1z \sim 1. II. Stellar content of quiescent galaxies within the dust-corrected stellar mass-colour and the UVJUVJ colour-colour diagrams

    Full text link
    Our aim is to determine the distribution of stellar population parameters (extinction, age, metallicity, and star formation rate) of quiescent galaxies within the rest-frame stellar mass-colour and UVJUVJ colour-colour diagrams corrected for extinction up to z1z\sim1. These novel diagrams reduce the contamination in samples of quiescent galaxies owing to dust-reddened galaxies, and they provide useful constraints on stellar population parameters. We set constraints on the stellar population parameters of quiescent galaxies combining the ALHAMBRA multi-filter photo-spectra with our SED-fitting code MUFFIT, making use of composite stellar population models. The extinction obtained by MUFFIT allowed us to remove dusty star-forming (DSF) galaxies from the sample of red UVJUVJ galaxies. The distributions of stellar population parameters across these rest-frame diagrams are revealed after the dust correction and are fitted by the LOESS method to reduce uncertainty effects. Quiescent galaxy samples defined via classical UVJUVJ diagrams are typically contaminated by a 20\sim20% fraction of DSF galaxies. A significant part of the galaxies in the green valley are actually obscured star-forming galaxies (3065\sim30-65%). Consequently, the transition of galaxies from the blue cloud to the red sequence, and hence the related mechanisms for quenching, seems to be much more efficient and faster than previously reported. The rest-frame stellar mass-colour and UVJUVJ colour-colour diagrams are useful for constraining the age, metallicity, extinction, and star formation rate of quiescent galaxies by only their redshift, rest-frame colours, and/or stellar mass. Dust correction plays an important role in understanding how quiescent galaxies are distributed in these diagrams and is key to performing a pure selection of quiescent galaxies via intrinsic colours.Comment: (37 pages, 29 figures, accepted for publication in A&A

    The ALHAMBRA survey: Accurate merger fractions by PDF analysis of photometric close pairs

    Full text link
    Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger fractions and rates from the ALHAMBRA survey are in excellent agreement with those from spectroscopic work, both for the general population and for red and blue galaxies. With the merger rate of bright (M_B <= -20 - 1.1z) galaxies evolving as (1+z)^n, the power-law index n is larger for blue galaxies (n = 2.7 +- 0.5) than for red galaxies (n = 1.3 +- 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is N_m = 0.57 +- 0.05 for red galaxies and N_m = 0.26 +- 0.02 for blue galaxies. Our new methodology exploits statistically all the available information provided by photometric redshift codes and provides accurate measurements of the merger fraction by close pairs only using photometric redshifts. Current and future photometric surveys will benefit of this new methodology.Comment: Submitted to A&A, 15 pages, 15 figures, 6 tables. Comments are welcome. Close pair systems available at https://cloud.iaa.csic.es/alhambra/catalogues/ClosePairs

    The ALHAMBRA photometric system

    Get PDF
    This paper presents the characterization of the optical range of the ALHAMBRA photometric system, a 20 contiguous, equal-width, medium-band CCD system with wavelength coverage from 3500A to 9700A. The photometric description of the system is done by presenting the full response curve as a product of the filters, CCD and atmospheric transmission curves, and using some first and second order moments of this response function. We also introduce the set of standard stars that defines the system, formed by 31 classic spectrophotometric standard stars which have been used in the calibration of other known photometric systems, and 288 stars, flux calibrated homogeneously, from the Next Generation Spectral Library (NGSL). Based on the NGSL, we determine the transformation equations between Sloan Digital Sky Survey (SDSS) ugriz photometry and the ALHAMBRA photometric system, in order to establish some relations between both systems. Finally we develop and discuss a strategy to calculate the photometric zero points of the different pointings in the ALHAMBRA project.Comment: Astronomical Journal on the 14th of January 201

    The ALHAMBRA survey : BB-band luminosity function of quiescent and star-forming galaxies at 0.2z<10.2 \leq z < 1 by PDF analysis

    Get PDF
    Our goal is to study the evolution of the BB-band luminosity function (LF) since z=1z=1 using ALHAMBRA data. We used the photometric redshift and the II-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I24I\leq24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift-magnitude-galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also included in our analysis. We modelled the LF with a redshift-dependent Schechter function affected by the same selection effects than the data. The measured ALHAMBRA LF at 0.2z<10.2\leq z<1 and the evolving Schechter parameters both for quiescent and star-forming galaxies agree with previous results in the literature. The estimated redshift evolution of MBQzM_B^* \propto Qz is QSF=1.03±0.08Q_{\rm SF}=-1.03\pm0.08 and QQ=0.80±0.08Q_{\rm Q}=-0.80\pm0.08, and of logϕPz\log \phi^* \propto Pz is PSF=0.01±0.03P_{\rm SF}=-0.01\pm0.03 and PQ=0.41±0.05P_{\rm Q}=-0.41\pm0.05. The measured faint-end slopes are αSF=1.29±0.02\alpha_{\rm SF}=-1.29\pm0.02 and αQ=0.53±0.04\alpha_{\rm Q}=-0.53\pm0.04. We find a significant population of faint quiescent galaxies, modelled by a second Schechter function with slope β=1.31±0.11\beta=-1.31\pm0.11. We find a factor 2.55±0.142.55\pm0.14 decrease in the luminosity density jBj_B of star-forming galaxies, and a factor 1.25±0.161.25\pm0.16 increase in the jBj_B of quiescent ones since z=1z=1, confirming the continuous build-up of the quiescent population with cosmic time. The contribution of the faint quiescent population to jBj_B increases from 3% at z=1z=1 to 6% at z=0z=0. The developed methodology will be applied to future multi-filter surveys such as J-PAS.Comment: Accepted for publication in Astronomy and Astrophysics. 25 pages, 20 figures, 7 table

    Lyman break and UV-selected galaxies at z ~ 1: II. PACS-100um/160um FIR detections

    Full text link
    We report the PACS-100um/160um detections of a sample of 42 GALEX-selected and FIR-detected Lyman break galaxies (LBGs) at z ~ 1 located in the COSMOS field and analyze their ultra-violet (UV) to far-infrared (FIR) properties. The detection of these LBGs in the FIR indicates that they have a dust content high enough so that its emission can be directly detected. According to a spectral energy distribution (SED) fitting with stellar population templates to their UV-to-near-IR observed photometry, PACS-detected LBGs tend to be bigger, more massive, dustier, redder in the UV continuum, and UV-brighter than PACS-undetected LBGs. PACS-detected LBGs at z ~ 1 are mostly disk-like galaxies and are located over the green-valley and red sequence of the color-magnitude diagram of galaxies at their redshift. By using their UV and IR emission, we find that PACS-detected LBGs tend to be less dusty and have slightly higher total star-formation rates (SFRs) than other PACS-detected UV-selected galaxies within their same redshift range. As a consequence of the selection effect due to the depth of the FIR observations employed, all our PACS-detected LBGs are LIRGs. However, none of them are in the ULIRG regime, where the FIR observations are complete. The finding of ULIRGs-LBGs at higher redshifts suggests an evolution of the FIR emission of LBGs with cosmic time. In an IRX-β\beta diagram, PACS-detected LBGs at z ~ 1 tend to be located around the relation for local starburst similarly to other UV-selected PACS-detected galaxies at their same redshift. Consequently, the dust-correction factors obtained with their UV continuum slope allow to determine their total SFR, unlike at higher redshifts. However, the dust attenuation derived from UV to NIR SED fitting overestimates the total SFR for most of our PACS-detected LBGs in age-dependent way: the overestimation factor is higher in younger galaxies.Comment: Accepted for publication in MNRA

    X-ray Flashes or soft Gamma-ray Bursts? The case of the likely distant XRF 040912

    Get PDF
    In this work, we present a multi-wavelength study of XRF 040912, aimed at measuring its distance scale and the intrinsic burst properties. We performed a detailed spectral and temporal analysis of both the prompt and the afterglow emission and we estimated the distance scale of the likely host galaxy. We then used the currently available sample of XRFs with known distance to discuss the connection between XRFs and classical Gamma-ray Bursts (GRBs). We found that the prompt emission properties unambiguously identify this burst as an XRF, with an observed peak energy of E_p=17+/-13 keV and a burst fluence ratio S(2-30keV)/S(30-400keV)>1. A non-fading optical source with R~24 mag and with an apparently extended morphology is spatially consistent with the X-ray afterglow, likely the host galaxy. XRF 040912 is a very dark burst since no afterglow optical counterpart is detected down to R>25 mag (3 sigma limiting magnitude) at 13.6 hours after the burst. The host galaxy spectrum detected from 3800A to 10000A, shows a single emission line at 9552A. The lack of any other strong emission lines blue-ward of the detected one and the absence of the Ly alpha cut-off down to 3800A are consistent with the hypothesis of the [OII] line at redshift z=1.563+/-0.001. The intrinsic spectral properties rank this XRF among the soft GRBs in the E_peak-E_iso diagram. Similar results were obtained for most XRFs at known redshift. Only XRF 060218 and XRF 020903 represent a good example of instrinsic XRF(i-XRF) and are possibly associated with a different progenitor population. This scenario may calls for a new definition of XRFs.Comment: 10 pages, 7 figures, accepted for publication in Astronomy & Astrophysic

    Quasi-stellar objects in the ALHAMBRA survey. I. Photometric redshift accuracy based on a 23 optical-NIR filter photometry

    Get PDF
    We characterize the ability of the ALHAMBRA survey to assign accurate photo-z's to BLAGN and QSOs based on their ALHAMBRA very-low-resolution optical-NIR spectroscopy. A sample of 170 spectroscopically identified BLAGN and QSOs have been used together with a library of templates (including SEDs from AGN, normal, starburst galaxies and stars) in order to fit the 23 photometric data points provided by ALHAMBRA in the optical and NIR (20 medium-band optical filters plus the standard JHKs). We find that the ALHAMBRA photometry is able to provide an accurate photo-z and spectral classification for ~88% of the spectroscopic sources over 2.5 deg^2 in different areas of the survey, all of them brighter than m678=23.5 (equivalent to r(SLOAN)~24.0). The derived photo-z accuracy is better than 1% and comparable to the most recent results in other cosmological fields. The fraction of outliers (~12%) is mainly caused by the larger photometric errors for the faintest sources and the intrinsic variability of the BLAGN/QSO population. A small fraction of outliers may have an incorrectly assigned spectroscopic redshift. The definition of the ALHAMBRA survey in terms of the number of filters, filter properties, area coverage and depth is able to provide photometric redshifts for BLAGN/QSOs with a precision similar to any previous survey that makes use of medium-band optical photometry. In agreement with previous literature results, our analysis also reveals that, in the 0<z<4 redshift interval, very accurate photo-z can be obtained without the use of near-IR broadband photometry at the expense of a slight increase of outliers. The NIR importance is expected to increase at higher redshifts (z>4). These results are relevant for the design of future optical follow-ups of surveys with a large fraction of BLAGN, as it is the case for X-rays or radio surveys.Comment: 17 pages, 12 figures. Accepted for publication in A&
    corecore