215 research outputs found

    TEACHING MARKETING AND MANAGEMENT TO AN EXTENSION AUDIENCE IN AN INTER-DISCIPLINARY SETTING

    Get PDF
    This paper discusses how economists utilize an inter-disciplinary workshop to teach marketing and management concepts to beef cattle producers and beef industry advisors. Range and animal scientists along with economists teach concepts in the classroom and then demonstrate these concepts with hands-on field activities in an 8-day Ranch Practicum, spread over an 8-month period.Teaching/Communication/Extension/Profession,

    Reverse methanogenesis and respiration in methanotrophic archaea

    Get PDF
    Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., "trace methane oxidation"). In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux). Net AOM is exergonic when coupled to an external electron acceptor such as sulfate (ANME-1, ANME-2abc, and ANME-3), nitrate (ANME-2d), or metal (oxides). In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (meta)genome comparison of archaeal methanotrophs and selected archaea. These differences include abundances and special structure of methyl coenzyme M reductase and of multiheme cytochromes and the presence of menaquinones or methanophenazines. ANME-2a and ANME-2d can use electron acceptors other than sulfate or nitrate for AOM, respectively. Environmental studies suggest that ANME-2d are also involved in sulfate-dependent AOM. ANME-1 seem to use a different mechanism for disposal of electrons and possibly are less versatile in electron acceptors use than ANME-2. Future research will shed light on the molecular basis of reversal of the methanogenic pathway and electron transfer in different ANME types.The authors thank Stefanie Berger (RU,Nijmegen) for critical reading of the manuscript. This research is supported by the Soehngen Institute of Anaerobic Microbiology (SIAM) Gravitation Grant (024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Organisation for Scientific Research (NWO). Mike S. M. Jetten was further supported by ERC AG 339880 Eco-MoM and Alfons J. M. Stams was supported by ERC AG 323009 Novel Anaerobes.info:eu-repo/semantics/publishedVersio

    Butyrate conversion by sulfate-reducing and methanogenic communities from anoxic sediments of Aarhus Bay, Denmark

    Get PDF
    The conventional perception that the zone of sulfate reduction and methanogenesis are separated in high-and low-sulfate-containing marine sediments has recently been changed by studies demonstrating their co-occurrence in sediments. The presence of methanogens was linked to the presence of substrates that are not used by sulfate reducers. In the current study, we hypothesized that both groups can co-exist, consuming common substrates (H2 and/or acetate) in sediments. We enriched butyrate-degrading communities in sediment slurries originating from the sulfate, sulfate–methane transition, and methane zone of Aarhus Bay, Denmark. Sulfate was added at different concentrations (0, 3, 20 mM), and the slurries were incubated at 10◦ C and 25◦ C. During butyrate conversion, sulfate reduction and methanogenesis occurred simultaneously. The syntrophic butyrate degrader Syntrophomonas was enriched both in sulfate-amended and in sulfate-free slurries, indicating the occurrence of syntrophic conversions at both conditions. Archaeal community analysis revealed a dominance of Methanomicrobiaceae. The acetoclastic Methanosaetaceae reached high relative abundance in the absence of sulfate, while presence of acetoclastic Methanosarcinaceae was independent of the sulfate concentration, temperature, and the initial zone of the sediment. This study shows that there is no vertical separation of sulfate reducers, syntrophs, and methanogens in the sediment and that they all participate in the conversion of butyrate.</p

    Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOB(T)).

    Get PDF
    Syntrophobacter fumaroxidans strain MPOB(T) is the best-studied species of the genus Syntrophobacter. The species is of interest because of its anaerobic syntrophic lifestyle, its involvement in the conversion of propionate to acetate, H2 and CO2 during the overall degradation of organic matter, and its release of products that serve as substrates for other microorganisms. The strain is able to ferment fumarate in pure culture to CO2 and succinate, and is also able to grow as a sulfate reducer with propionate as an electron donor. This is the first complete genome sequence of a member of the genus Syntrophobacter and a member genus in the family Syntrophobacteraceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,990,251 bp long genome with its 4,098 protein-coding and 81 RNA genes is a part of the Microbial Genome Program (MGP) and the Genomes to Life (GTL) Program project

    Growth of anaerobic methane-oxidizing archaea and sulfate reducing bacteria in a high pressure membrane-capsule bioreactor

    Get PDF
    Communities of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB) grow slowly, which limits the ability to perform physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated SRB are affected by it. Here, we report on the growth of ANME-SRB in a membrane capsule bioreactor inoculated with Eckernförde Bay sediment that combines high-pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2-m-pore-size membrane. The results were compared to previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor inoculated with the same sediment. The rates of oxidation of labeled methane were not higher at 10.1 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b was abundant in both reactors, but subtype ANME-2c was enriched only at 10.1 MPa. SRB at 10.1 MPa mainly belonged to the SEEP-SRB2 and Eel-1 groups and the Desulfuromonadales and not to the typically found SEEP-SRB1 group. The increase of ANME-2a/b occurred in parallel with the increase of SEEP-SRB2, which was previously found to be associated only with ANME-2c. Our results imply that the syntrophic association is flexible and that methane pressure and sulfide concentration influence the growth of different ANME-SRB consortia. We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at a high methane partial pressure.This work was supported in part by the EET program of the Dutch Ministries of Economic Affairs; Education, Culture and Science; and Environment and special planning through the Anaerobic Methane Oxidation for Sulfate Reduction project. This research was also supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO) and which is partly funded by the Ministry of Economic Affairs. The research of A.J.M.S. is supported by an ERC grant (project 323009) and a Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO)

    Exploring concepts of health with male prisoners in three category-C English prisons

    Get PDF
    Lay understandings of health and illness have a well established track record and a plethora of research now exists which has examined these issues. However, there is a dearth of research which has examined the perspectives of those who are imprisoned. This paper attempts to address this research gap. The paper is timely given that calls have been made to examine lay perspectives in different geographical locations and a need to re-examine health promotion approaches in prison settings. Qualitative data from thirty-six male sentenced prisoners from three prisons in England were collected. The data was analysed in accordance with Attride-Stirling's (2001) thematic network approach. Although the men's perceptions of health were broadly similar to the general population, some interesting findings emerged which were directly related to prison life and its associated structures. These included access to the outdoors and time out of their prison cell, as well as maintaining relationships with family members through visits. The paper proposes that prisoners' lay views should be given higher priority given that prison health has traditionally been associated with medical treatment and the bio-medical paradigm more generally. It also suggests that in order to fulfil the World Health Organization's (WHO) vision of viewing prisons as health promoting settings, lay views should be recognised to shape future health promotion policy and practice

    Moorella stamsii sp. nov., a new anaerobic thermophilic hydrogenogenic carboxydotroph isolated from digester sludge

    Get PDF
    A novel anaerobic, thermophilic, carbon monoxide-utilizing bacterium, strain E3-O, was isolated from anaerobic sludge of a municipal solid waste digester. Cells were straight rods, 0.6 to 1μm in diameter and 2 to 3 μm in length, growing as single cells or in pairs. Cells formed round terminal endospores. The temperature range for growth was 50 to 70°C, with an optimum at 65°C. The pH range for growth was 5.7 to 8.0, with an optimum at 7.5. Strain E3-O had the capability to ferment various sugars, such as fructose, galactose, glucose, mannose, raffinose, ribose, sucrose and xylose, producing mainly H2 and acetate. In addition, the isolate was able to grow with CO as the sole carbon and energy source. CO oxidation was coupled to H2 and CO2 formation. The G+C content of the genomic DNA was 54.6 mol %. Based on 16S rRNA gene sequence analysis, this bacterium is most closely related to Moorella glycerini (97% sequence identity). Based on the physiological features and phylogenetic analysis, it is proposed that strain E3-O should be classified in the genus Moorella as a new species, Moorella stamsii. The type strain of Moorella stamsii is E3-OT (=DMS 26271T=CGMCC 1.5181T).This work was possible through the financial support provided by the Portuguese Science Foundation (FCT) and the European Social Fund (POPH-QREN) through a PhD grant SFRH/BD/48965/2008 to J.I.A

    Health-state utilities in a prisoner population : a cross-sectional survey

    Get PDF
    Background: Health-state utilities for prisoners have not been described. Methods: We used data from a 1996 cross-sectional survey of Australian prisoners (n = 734). Respondent-level SF-36 data was transformed into utility scores by both the SF-6D and Nichol's method. Socio-demographic and clinical predictors of SF-6D utility were assessed in univariate analyses and a multivariate general linear model. Results: The overall mean SF-6D utility was 0.725 (SD 0.119). When subdivided by various medical conditions, prisoner SF-6D utilities ranged from 0.620 for angina to 0.764 for those with none/mild depressive symptoms. Utilities derived by the Nichol's method were higher than SF-6D scores, often by more than 0.1. In multivariate analysis, significant independent predictors of worse utility included female gender, increasing age, increasing number of comorbidities and more severe depressive symptoms. Conclusion: The utilities presented may prove useful for future economic and decision models evaluating prison-based health programs
    • …
    corecore