- 1 Title: Growth of anaerobic methane oxidizing archaea and sulfate reducing bacteria in a high
- 2 pressure membrane-capsule bioreactor
- 3
- 4 Running title: High pressure activity and growth of ANME and SRB
- 5
- 6 Peer H.A. Timmers^a#, Jarno Gieteling^b, H.C Aura Widjaja-Greefkes^a, Caroline M. Plugge^a,
- 7 Alfons J.M. Stams^{a,c} Piet N.L. Lens^d and Roel J.W. Meulepas^{b,d,e}
- 8
- ^aWageningen University, Laboratory of Microbiology, Dreijenplein 10, 6703 HB
- 10 Wageningen, the Netherlands
- ^bWageningen University, Sub-department of Environmental Technology, Bornse Weilanden
- 12 9, 6708 WG Wageningen, the Netherlands
- 13 ^cCEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057
- 14 Braga, Portugal
- ^dIHE: Pollution Prevention and Control Core, UNESCO-IHE, Westvest 7, 2611 AX Delft,
- 16 The Netherlands
- ^eWetsus, centre of excellence for sustainable water technology, Agora 1, 8934 CJ
- 18 Leeuwarden, the Netherlands
- 19 #Corresponding author. Mailing address: Wageningen University, Laboratory of
- 20 Microbiology, Dreijenplein 10, 6703HB Wageningen, Phone: +31 317483739. Fax: +31 317
- 21 483829. Email: peer.timmers@wur.nl

22 ABSTRACT

Anaerobic methane oxidizing communities of archaea (ANME) and sulfate reducing bacteria 23 (SRB) grow slowly, which limits physiological studies. High methane partial pressure was 24 25 previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated sulfate reducing bacteria (SRB) are affected by it. Here, we report 26 27 growth of ANME/SRB in a membrane-capsule bioreactor inoculated with Eckernförde Bay 28 sediment that combines high pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2 µm membrane. Results were compared to 29 30 previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor 31 inoculated with the same sediment. Labelled-methane oxidation rates were not higher at 10.1 32 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b 33 was abundant in both reactors, but subtype ANME-2c was only enriched at 10.1 MPa. SRB at 34 10.1 MPa mainly belonged to the SEEP-SRB2, Eel-1 group and Desulforomonadales and not 35 to the typically found SEEP-SRB1. Increase of ANME-2a/b occurred in parallel with increase of SEEP-SRB2 which was previously only found associated with ANME-2c. Our results 36 37 imply that the syntrophic association is flexible and that methane pressure and sulfide 38 concentration influence growth of different ANME-SRB consortia.

We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at high methane partial pressure.

44

45 Keywords Anaerobic methane oxidation – methanotrophs - high pressure - AOM - TMO -

46 ANME

47 INTRODUCTION

48	Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is a process
49	influenced by the CH ₄ partial pressure. The SR rate of sediment from Hydrate Ridge was
50	significantly higher at elevated CH_4 partial pressure (1, 2). Between 0 and 0.15 MPa, there is
51	a positive linear correlation between the CH ₄ partial pressure and the AOM and SR rates of an
52	anaerobic methanotrophic enrichment obtained from Eckernförde Bay sediment (3). The
53	methane-dependent sulfide production by microbial mats from the Black Sea increased 10 to
54	15-fold after increasing the methane partial pressure from 0.2 to 10.0 MPa (4). The affinity
55	constant (K _m) for methane of anaerobic methanotrophs from Gulf of Cádiz sediment is around
56	37 mM which is equivalent to 3 MPa CH_4 (5). Because of the more negative Gibbs free
57	energy change (ΔG) at elevated CH ₄ partial pressures, growth of the anaerobic methanotrophs
58	might be faster when the CH ₄ partial pressure is increased (Fig. S1). Bioreactor studies with
59	high methane pressure have been performed (4, 5), but it is not clear how the different ANME
60	subtypes and associated SRB are affected by the methane pressure. This information would
61	contribute to the understanding of the process of AOM coupled to SR and would help in
62	further attempts to cultivate the responsible organisms.
63	In this study, we investigated the effect of the CH ₄ partial pressure on methane oxidation and
64	methane production rates in Eckernförde Bay sediment from the Baltic Sea. We also studied
65	the effect of long-term (240-days) incubation under a high methane pressure (10.1 MPa CH ₄)
66	on the activity of this sediment ('reactor HP-1'). These results, together with the results of
67	microbial community analysis, were compared with data from a bioreactor at ambient
68	pressure ('reactor AP') (6, 7) inoculated with the same sediment as reactor HP-1 and with the
69	original Eckernförde Bay sediment (EB). We also investigated the effect of the CH ₄ partial
70	pressure on methane oxidation and methane production rates in mixed methanogenic and
71	sulfate-reducing granular sludge, both in short and long-term incubation ('reactor HP-2').

AEM Accepts published online ahead of print

This was done to evaluate the capacity of methanogenic and sulfate reducing communities to
perform methane oxidation under favorable conditions. A summary of the experimental set-up
is given in Fig.1.

75

76 MATERIALS AND METHODS

77 Origin of the inocula. The samples of the Eckernförde Bay sediment used for the initial 78 activity assays and to inoculate reactor HP-1 were taken at Eckernförde Bay (Baltic Sea) at 79 station B (water depth 28 m; position 54°31'15N, 10°01'28E) during a cruise of the German 80 research vessel Littorina in June 2005. This sampling site has been described by Treude et al. 81 (8). Sediment samples were taken with a small multicore sampler based on the construction 82 described previously (9). The cores had a length of 50 cm and reached 30-40 cm into the 83 sediment bed. Immediately after sampling, the content of the cores was mixed in a large 84 bottle, which was made anoxic by replacing the headspace by anoxic artificial seawater. Back 85 in the laboratory, the sediment was homogenized and transferred into 1L bottles in an anoxic chamber. The 1-L bottles were closed with butyl rubber stoppers and the headspace was 86 87 replaced by CH_4 (0.15 MPa). 88 The mixed sludge used for the initial activity assays and to inoculate reactor HP-2 was 89 sampled at two full-scale mesophilic UASB reactors: a methanogenic reactor treating

90 wastewater from paper mills (Industriewater Eerbeek, Eerbeek, the Netherlands, June 2005)

91 and a sulfate-reducing reactor fed with ethanol (Emmtec, Emmen, the Netherlands, May

92 2006). The two sludge types were crushed by pressing them sequentially through needles with

diameters of 1.2, 0.8 and 0.5 mm, mixed and transferred into anaerobic bottles.

94 The bottles with sediment and sludge were stored in the dark at 4°C until the experiments 95 were started.

97 Medium preparation. The basal marine medium used for the incubations with Eckernförde 98 sediment was made as described previously (10). The basal fresh water medium used for the 99 incubations with mixed sludge was made according to Meulepas *et al.* (11). Both media were 100 minimal media and did not contain any carbon source and no other electron acceptor than 101 sulfate. The media were boiled, cooled down under a nitrogen (N₂) flow and transferred into 102 stock bottles with a N₂ headspace until use. The final pH of the media was 7.2. The phosphate 103 provided buffering capacity to maintain a neutral pH value.

104

105 Effect of the CH₄ partial pressure on the initial activity. The effect of the CH₄ partial 106 pressure on the CH₄ oxidation and methane production rate of both the Eckernförde Bay 107 sediment and the mixed sludge was assessed in triplicate incubations with 0.02 gram volatile 108 suspended solids (g_{VSS}) at atmospheric (0.101 MPa) and elevated (10.1 MPa) methane 109 pressure (Fig. 1, experiment 1). These tests were performed in glass tubes (18 ml), sealed with 110 a butyl rubber stopper and capped at one side and equipped with a piston at the opposite side 111 (De Glasinstrumentenmakerij, Wageningen, the Netherlands)(11). The glass tubes were filled 112 with sediment or mixed sludge and filled with 9 ml marine medium or freshwater medium, 113 respectively. Then, tubes were closed and flushed with N_2 . After removing the N_2 gas with a syringe and needle, 3 ml¹³CH₄ (purity 5.5) was added. The glass tubes were incubated 114 115 statically at 20°C in a non-pressurized incubator or in a 2.0 L pressure vessel (Parr, Moline, 116 IL, USA) filled with 1.8 L water. The vessel was pressurized with N₂ gas. The pH, liquid 117 volume, gas volume and gas composition in the tubes were measured weekly. To do so, the 118 pressure vessel had to be depressurized. Both pressurization and depressurization were done 119 gradually over a period of two hours. 120

121	Effect of long-term high-pressure incubation. Two high-pressure vessels (Parr, Moline,
122	USA) were controlled at 20 $(\pm 1)^{\circ}$ C and equipped with a stirrer controlled at 100 rpm (Fig. 1,
123	experiment 2). One vessel was filled with 1.8 L marine medium and inoculated with 25
124	membrane capsules, each containing 0.038 (\pm 0.003) g _{VSS} Eckernförde Bay sediment (reactor
125	HP-1). The other vessel was filled with 0.5 L fresh water medium and inoculated with 25
126	membrane capsules, each containing 0.072 (\pm 0.006) g _{VSS} mixed sludge (reactor HP-2). The
127	membrane capsules were cylindrically shaped, 14 mm in diameter, 20 mm long and had a
128	membrane surface of 840 mm ² . The polysulfone membranes (Triqua BV, Wageningen, the
129	Netherlands) had a pore size of 0.2 μm to retain microorganisms. The filled capsules were
130	slightly lighter than water, which made them float when the stirrer was turned off. During
131	inoculation, the lid of the vessel was removed in an anaerobic glove box containing 90% $N_{\rm 2}$
132	and 10% H ₂ . Afterwards, the high-pressure vessel was connected to a bottle with pressurized
133	CH ₄ (purity 5.5). The vessel was flushed with approximately 10 L CH ₄ (the gas entered the
134	vessel at the bottom to remove any dissolved gas) and subsequently slowly pressurized to 10.1
135	MPa. At four time points (at 60, 110, 160 and 240 days), the pressure was gradually released
136	and the vessel was opened in an anaerobic glove box to replace the medium and to sample
137	two membrane capsules per reactor. Subsequently, the vessel was closed, flushed and
138	pressurized again with CH_4 gas as described above. The high-pressure vessels were equipped
139	with sampling ports for liquid phase sampling just before depressurization for sulfide
140	determination. For activity determination, the sampled membrane capsules were incubated in
141	25-ml serum bottles at ambient pressure, closed with butyl rubber stoppers and filled with 20
142	ml medium. The 5 ml headspace was filled with pure 13 C-labeled CH ₄ (0.13 MPa). The serum
143	bottles were incubated at 20°C in orbital shakers (100 rpm). For around 30 days, weekly the
144	pH, liquid and gas volume, pressure, gas composition and sulfide concentration in the serum
145	bottles was measured. After these assays, the two membrane capsules per sampling point were

frozen at -20°C for subsequent DNA extraction for molecular analysis. From the last sampling
point at 240 days, only one membrane capsule was taken.

148

149 **Geochemical analyses.** Total dissolved sulfide species (H_2S , HS^- and S^{2-}) were measured

150 photometrically using a standard kit (LCK 653) and a photo spectrometer (Xion 500) both

151 from Hach Lange (Dusseldorf, Germany).

152 Gas composition was measured on a gas chromatograph-mass spectrometer (GC-MS) from

153 Interscience (Breda, The Netherlands). The system was composed of a Trace GC equipped

154 with a GS-GasPro column (30m by 0.32 mm; J&W Scientific, Folsom, CA), and a Ion-Trap

155 MS. Helium was the carrier gas at a flow rate of 1.7mL min⁻¹. The column temperature was

156 30°C. The fractions of ${}^{13}CH_4$, ${}^{12}CH_4$, ${}^{13}CO_2$ and ${}^{12}CO_2$ were derived from the mass spectrum

157 as described (12), with a retention time for CH_4 at 1.6 min in the gas chromatogram and 1.8 158 min for CO_2 .

159 The pressure in the bottles and tubes was determined using a portable membrane pressure

160 unit, WAL 0–0.4 MPa absolute (WalMess- und Regelsysteme, Oldenburg, Germany).

161 The pH was checked by means of pH paper (Macherey-Nagel, Dűren, Germany).

162

163 **Calculations.** For explanation on calculations of total ¹³CO₂, ¹²CO₂, ¹³CH₄ and ¹²CH₄, see

164 supplementary information and Table S1.

165

166 **DNA extraction.** DNA was extracted from the membrane capsules using the Fast DNA Kit

167 for Soil (MP Biomedicals, Ohio, USA) according to the manufacturer's protocol with two 45-

168 second beat beating steps using a Fastprep Instrument (MP Biomedicals, Ohio, USA). In

169 parallel, DNA was extracted from stored samples of reactor AP and from the original

170 Eckernförde bay sediment (EB) (Fig. 1, experiment 0).

171	Clone library construction. Extracted DNA from the last sampling point at 240 days was
172	used for clone library construction. To amplify almost full-length bacterial 16S rRNA genes
173	for cloning, primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5'-
174	GYTACCTTGTTACGACTT-3') (13) were used. The archaeal 16S rRNA genes were
175	amplified using primers A109f (ACKGCTCAGTAACACGT) (14) and universal reverse
176	primer 1492R. PCR amplification was done with the GoTaq Polymerase kit (Promega,
177	Madison, Wisconsin, USA) using a G-Storm cycler (G-storm, Essex, UK) with a pre-
178	denaturing step of 2 min at 95°C followed by 35 cycles of 95°C for 30 s, 52°C for 40 s and
179	72°C for 1.5 min. Lastly, a post-elongation step of 5 min at 72°C was done. PCR products
180	were pooled and purified using the PCR Clean & Concentrator kit (Zymo Research
181	Corporation, Irvine, CA, USA) and were ligated into a pGEM-T Easy plasmid vector (pGEM-
182	T Easy Vector System I, Promega, Madison, Wisconsin, USA) and transformed into E. coli
183	XL1-Blue Competent Cells (Stratagene/Agilent Technologies Santa Clara, CA, USA). Both
184	ligation and transformation were performed according to the manufacturer's instructions.
185	
186	DGGE analysis. Extracted DNA from the membrane capsules at every sampling point was
187	used for DGGE analysis, as well as DNA from reactor AP and from EB. The V3 region of the
188	archaeal 16S rRNA sequences was amplified with primers GC-ARC344f (5'-
189	ACGGGGGYGCAGCAGGCGCGA-3') and ARC519r (5'-GWATTACCGCGG CKGCTG-
190	3') (15) using the GoTaq Polymerase kit (Promega, Madison, Wisconsin, USA). PCR
191	reactions were performed in a G-Storm cycler (G-storm, Essex, UK) with a pre-denaturing
192	step of 5 min at 94°C followed by 10 cycles of 94°C for 10 s, 61°C for 10 s (-0.5°C/cycle),
193	72°C for 40 s and 25 cycles of 94°C for 10s, 56 °C for 20s, 72°C for 40 s and a post-elongation
194	step of 30 min at 72°C. Bacterial 16S rRNA V6-V8 regions were amplified using Phire Hot

197 and R-1401 (5'- CGGTGTGTACAAGACCC-3') (16). Bacterial amplicons were produced

- 198 with a G-Storm cycler (G-storm, Essex, UK) using a pre-denaturing step of 30 s at 98°C
- 199 followed by 35 cycles of 98°C for 10 s, 56°C for 10 s, 72°C for 30 s and a post-elongation step
- 200 of 1 min at 72°C. Forward primers had a GC clamp of 40 bp attached to the 5' end as used by
- 201 Yu et al. (15). DGGE analysis was performed as previously described (17, 18) in a Dcode
- system (Biorad, Germany) at 60°C for 16 hours with a denaturing gradient of 30-60% for
- 203 bacterial profiles and a 40-60% denaturing gradient for archaeal profiles, as recommended
- 204 (15).

To clarify which of the most intense DGGE bands correspond to an OTU found in the clone library, clones were subjected to PCR-DGGE after cell lysis, using the same primer pairs that were used for previous DGGE profiling. One clone of every OTU was loaded on a DGGE gel parallel to the last sample (240 days) of reactor HP-1. Clones that corresponded to bands of the DGGE pattern of reactor HP-1 were annotated as such using the Bionumerics software V4.61 (Applied Maths NV, Belgium).

211

212 Phylogenetic analysis. For the archaeal and bacterial clone library, 75 and 82 picked white

213 colonies were sent for sequencing respectively, with the primer pair SP6 (5'-

214 ATTTAGGTGACACTATAGAA-3') and T7 (5'- TAATACGACTCACTATAGGG-3') to

- 215 GATC Biotech (Konstanz, Germany). All reverse and forward sequenced overlapping reads
- 216 were trimmed of vector and bad quality sequences, and were assembled into contiguous reads
- 217 using the DNA baser software (Heracle BioSoft S.R.L., Pitesti, Romania). After assembly,
- 218 possible chimeras were removed using the Greengenes Bellerophon Chimera check
- 219 (http://greengenes.lbl.gov) (18). Whole 16S rRNA sequences were checked with BlastN (20).

220 Sequences were aligned using the SINA online alignment tool version 1.2.11 (21).

221 Phylogenetic trees were constructed after merging aligned sequences with the Silva SSU Ref

database release 111 (22) using the ARB software package version 5.3-org-8209 (23).

223 Phylogenetic trees were calculated by the ARB neighbor-joining algorithm.

224

225 Quantitative real-time PCR. Extracted DNA from the membrane capsules at every sampling 226 point was used for qPCR analysis, as well as DNA from reactor AP and from EB. The DNA 227 concentration was determined with the Qubit 2.0 fluorometer (Thermo Fisher Scientific, MA, 228 USA). Amplifications were done in triplicate in a BioRad CFX96™ system (Bio-Rad 229 Laboratories, Hercules, CA, USA) in a final volume of 25 µl using iTaq Universal SYBR 230 Green Supermix (Bio-Rad Laboratories, Hercules, CA, USA), 5 ng of template DNA and 231 primers with optimal concentrations and annealing temperatures for highest efficiency and 232 specificity (Table S2), all according to the manufacturer's recommendations. New primer sets 233 were designed using the ARB software package version 5.3-org-8209 (23). Triplicate standard curves were obtained with 10- fold serial dilutions ranged from $2x10^5$ to $2x10^{-2}$ 234 235 copies per µl of plasmids containing 16S rRNA archaeal inserts of ANME-2a/b and ANME-236 2c and bacterial inserts of SEEP-SRB2 and Eel-1 group. The efficiency of the reactions was up to 100% and the R² of the standard curves were up to 0.999. All used primers were 237 238 extensively tested for specificity with cloned archaeal inserts of ANME-1, ANME-2a/b, 239 ANME-2c, Methanococcoides and Methanosarcinales and bacterial inserts of SEEP-SRB1, 240 SEEP-SRB-2, Eel-1 group, Desulforomonadales, Desulfosarcina and Myxococcales and with 241 genomic DNA of Methanosarcina mazei TMA (DSM-9195) and Desulfovibrio sp. G11 242 (DSM-7057). PCR conditions consisted of a pre-denaturing step for 5 min at 95°C, followed 243 by 5 touch-down cycles of 95°C for 30s, annealing at 60°C for 30s with a decrement per cycle 244 to reach the optimized annealing temperature (temperatures are shown in Table S2), and

245	extension at 72°C (times are shown in Table S2). This was followed by 40 cycles of
246	denaturing at 95°C for 15s, 30s of annealing and extension at 72°C. PCR products were
247	checked for specificity by a melting curve analysis (72-95°C) after each amplification step
248	and gel electrophoresis. Quantification of specific archaeal and bacterial groups was
249	expressed as total 16S rRNA gene copies per ng DNA extracted from the capsules per g_{vss} .
250	
251	Nucleotide sequences. Nucleotide sequence data reported are available in the
252	DDJB/EMBL/GenBank databases under the accession numbers HF922229 to HF922386.
253	
254	RESULTS
255	
256	Effect of the CH ₄ partial pressure on the initial activity. The results of the initial activity
257	experiment (Fig.1, experiment 1) are shown in Table 1 which presents the effect of an
258	elevated ${}^{13}CH_4$ partial pressure on the oxidation of ${}^{13}CH_4$ to ${}^{13}CO_2$ and the ${}^{12}CH_4$ production
259	of Eckernförde Bay sediment and mixed sludge. In both incubations with Eckernförde Bay
260	sediment and mixed sludge, we observed ${}^{12}CH_4$ production and ${}^{13}CO_2$ production. Since no
261	other carbon source than ${}^{13}CH_4$ was added, the ${}^{12}CH_4$ must have been produced from
262	endogenous organic matter. At 0.101 MPa CH4, both Eckernförde Bay sediment and mixed
263	
	sludge showed 13 CO ₂ production during net methanogenesis. At 10.1 MPa, the Eckernförde
264	sludge showed 13 CO ₂ production during net methanogenesis. At 10.1 MPa, the Eckernförde Bay sediment showed no methane production and 4 times higher oxidation rates of 13 CH ₄ to
264 265	sludge showed 13 CO ₂ production during net methanogenesis. At 10.1 MPa, the Eckernförde Bay sediment showed no methane production and 4 times higher oxidation rates of 13 CH ₄ to 13 CO ₂ than at 0.101 MPa. The oxidation of 13 CH ₄ to 13 CO ₂ by the mixed sludge was
264 265 266	sludge showed ¹³ CO ₂ production during net methanogenesis. At 10.1 MPa, the Eckernförde Bay sediment showed no methane production and 4 times higher oxidation rates of ¹³ CH ₄ to ¹³ CO ₂ than at 0.101 MPa. The oxidation of ¹³ CH ₄ to ¹³ CO ₂ by the mixed sludge was approximately 2 times higher at 10.1 MPa CH ₄ than at 0.1 MPa CH ₄ but still showed net
264265266267	sludge showed ¹³ CO ₂ production during net methanogenesis. At 10.1 MPa, the Eckernförde Bay sediment showed no methane production and 4 times higher oxidation rates of ¹³ CH ₄ to ¹³ CO ₂ than at 0.101 MPa. The oxidation of ¹³ CH ₄ to ¹³ CO ₂ by the mixed sludge was approximately 2 times higher at 10.1 MPa CH ₄ than at 0.1 MPa CH ₄ but still showed net methane production.

269	Effect of long-term high-pressure incubation. The long-term effects of an elevated methane
270	partial pressure were tested in reactors with either Eckernförde Bay sediment or mixed sludge
271	(Fig.1, experiment 2). At 10.1 MPa CH ₄ , the methane oxidation rate in reactor HP-1 increased
272	from 0.006 mmol g_{VSS}^{-1} day ⁻¹ to 0.024 mmol g_{VSS}^{-1} day ⁻¹ during the 240-day incubation (Fig.
273	2A and Table S3). The 12 CO ₂ production rate on the other hand decreased, likely because the
274	available endogenous organic matter was depleted. After 240 days, ¹³ CO ₂ production was
275	faster than the endogenous ${}^{12}\text{CO}_2$ production. Initially the SR rate by reactor HP-1 also
276	decreased, but from day 110 onwards the SR rate was correlated to the methane oxidation
277	rate. During long-term incubation of the mixed sludge, methane oxidation and sulfide
278	production in reactor HP-2 did not increase, nor were they coupled during the 160-day
279	incubation at 10.1 MPa CH ₄ . The total CO ₂ and sulfide production rates decreased during the
280	reactor run (Fig 2B and Table S3).
281	

282 Microbial community of Eckernförde Bay sediment reactor. An archaeal clone library of a 283 sample taken from reactor HP-1 at 240 days of incubation shows that the total of 75 284 sequences are dominated by different clades of ANME archaea (Fig. 3 and Table S4). The 285 highest percentage of ANME clones belonged to the ANME-2a/b group (56% of all 286 sequences), followed by ANME-2c (18.6%) and ANME-1b (4%). Other clones with relatively 287 high frequency in the clone library cluster with the Miscellaneous Crenarchaeotal Group 15 288 (MCG-15) (9.3%) and the Marine benthic group D (MBG-D) (8%). Archaeal DGGE profiling 289 of membrane capsule DNA from reactor HP-1 at all sampling points was done to see initial 290 community changes. Afterwards, PCR-DGGE of cloned inserts with known composition 291 revealed that bands belonging to ANME-2a/b and ANME-2c were increasing in intensity 292 (Fig. S2). qPCR analysis of the same samples with specific 16S rRNA primers for ANME-293 2a/b, ANME-2c and total Archaea are shown in Fig 4. A significant increase (2-tailed t-test

294	with unequal variance p<0.05) of both ANME-2a/b and ANME-2c 16S rRNA gene copies at
295	110 days of incubation is observed, confirming initial DGGE results. The increase of ANME
296	continued throughout reactor run and coincided with an increase of AOM and SR rates (Fig.
297	2A and Table S3). The ANME-2a/b clade comprised a major fraction of total Archaea
298	whereas ANME-2c abundance was much lower during reactor operation (Fig. 4). However,
299	ANME-2c 16S rRNA gene copies showed a faster increase than ANME-2a/b between 160
300	and 240 days.
301	A bacterial clone library of reactor HP-1 at 240 days of incubation of 82 sequences shows a
302	high bacterial diversity (Fig. 5 and Table S4). All but two sequences within the clone library
303	showed 97% or less similarity to known cultivated members. From the Deltaproteobacteria,
304	the most common phylotypes recovered belonged to the methane-seep associated 'Eel-1'
305	(6.2% of all sequences) and 'Eel-2' (13.6%) clades as described by Orphan et al. (24) of
306	which the Eel-2 clade clusters within the SEEP-SRB2 group. We also found sequences that
307	are affiliated with the order Desulforomonadales (7.4%). Members of the
308	Desulfobacteriaceae were least abundant and only 2.5% belonged to the
309	Desulfosarcinales/Desulfococcus cluster SEEP-SRB1. Some sequences found belonged to the
310	Myxococcales group. The remaining bacterial phyloptypes were very diverse and many
311	groups are also found previously in AOM sediments and reactor systems. Some are only
312	represented by one phylotype derived from the clone library (Table S4).
313	qPCR analysis results of membrane capsule DNA from reactor HP-1 at all sampling points
314	with 16S rRNA primers for total Bacteria, specific primers for SEEP-SRB2 and the newly
315	designed specific primers for Eel-1 are shown in Fig. 6. An 8-fold increase of SEEP-SRB2
316	16S rRNA gene copies was observed at 160 days of incubation and Eel-1 16S rRNA gene
317	copies increased 4-fold. The abundance of Eel-1 decreased slightly in parallel with total
318	Bacteria after 160 days of incubation whereas SEEP-SRB2 continued to slightly increase.

13

.... 320 remained at a constant 2.5% of total Bacteria. From the qPCR results, we also calculated the 321 ratios of ANME-2a/b and ANME-2c over Eel-1 and SEEP-SRB2 copy numbers. We observed 322 that only ANME-2a/b and SEEP-SRB2 were detected in a constant ratio of around 1:2 323 throughout reactor operation and in EB (Fig. 6C). In reactor AP, much more ANME-2a/b 324 copies were detected as compared to SEEP-SRB2. The Eel-1 copies did not show a constant 325 ratio with any ANME subtype. We could not analyze *Desulforomonadales* within the reactor 326 as we were not able to design specific primers for this clade. 327 328 Microbial community of mixed sludge reactor. Microbial community analysis of the mixed 329 sludge reactor HP-2 was restricted to archaeal and bacterial DGGE analysis (Fig. S2 and S3) 330 as no increase in methane oxidation was observed. On both the archaeal and bacterial DGGE 331 profile, we did not see any community changes during reactor run.

332

333 DISCUSSION

334 Activity of Eckernförde Bay sediment. Our initial activity experiments showed that the 335 Eckernförde Bay sediment performed trace methane oxidation (TMO) during net 336 methanogenesis at 0.101 MPa CH₄ and net anaerobic oxidation of methane (AOM) at 10.1 MPa CH₄ without methane production (Table 1). Because the ${}^{13}CO_2$ production rate was also 337 338 4 times higher at 10.1 MPa CH_4 as compared to 0.101 MPa CH_4 , we expect that the AOM 339 activity of Eckernförde Bay sediment is stimulated by the higher methane partial pressure, 340 although the sediment originates from relative shallow waters of 28 m depth (8). The AOM 341 activity in reactor HP-1 did however not increase faster than the reported AOM activity of the 342 same Eckernförde Bay sediment in reactor AP at 0.101 MPa CH₄. In reactor HP-1, the AOM

343	rate increased from 0.006 to 0.025 mmol g_{VSS}^{-1} d ⁻¹ over 240 days (Fig 2A and Table S3) and
344	in reactor AP, the AOM rate increased from 0.003 to 0.55 mmol g_{VSS}^{-1} day ⁻¹ in 842 days (7).
345	Despite the good mixing of reactor HP-1, the increase of the AOM rate could have been
346	limited by the larger diffusion distances. In reactor HP-1 the biomass was present in
347	membrane capsules with a diameter of 14 mm, whereas reactor AP was a membrane
348	bioreactor (MBR) where the biomass was present as 0.1-mm flocks that were directly in
349	contact with the bioreactor medium (7). In reactor HP-1 at day 240, the average methane flux
350	though the membranes was 0.11 $\mu mol~cm^{-2}~d^{-1}~(=0.025~mmol~g_{VSS}^{-1}~d^{-1}$ * 0.038 g_{VSS} / 8.8
351	cm ²). At this flux the Δ [CH ₄]/ Δ x is 16 mM cm ⁻¹ , according to Fick's first law of diffusion
352	(CH ₄ flux = - $\partial D_{\text{methane}} \Delta [CH_4] / \Delta x$). At 10.1 MPa CH ₄ and 20°C, the CH ₄ concentration in the
353	bulk liquid was approximately 152 mM. The average CH ₄ concentration near the
354	microorganisms was therefore only marginally lower than in the bulk liquid and cannot
355	explain the slow activity increase.
356	A more plausible explanation for the slow activity increase could be related to the method of
357	measuring activity of the high pressure reactor samples. Sampled membrane capsules were
358	incubated in 25-ml serum bottles at ambient pressure, using 0.13 MPa of pure ¹³ C-labeled
359	CH ₄ (Fig.1, experiment 2). Activity measurement at ambient pressure previously showed
360	decreased AOM activity as compared to high pressure measurements (25) but also the
361	microorganisms could have adapted to the higher pressure and will be less active when
362	incubated at ambient pressure as shown for true piezophiles (26). Indeed, the doubling times
363	calculated from the exponential increase in AOM rate in both reactors was 3.8 months
364	(R^2 =0.98, N=12) for reactor AP and 3.9 months (R^2 =0.90, N=15) for reactor HP-1. The
365	doubling time calculated from qPCR analysis was 0.97 months for ANME-2a/b, 0.75 months
366	for ANME-2c and 0.96 months for SEEP-SRB2. This indicates that high methane partial

367 pressure had a positive effect on the AOM mediating microorganisms which was not reflected368 in AOM activity measurements.

A less likely explanation could be that reactor HP-1 was operated in fed-batch mode. Here,
sulfide and bicarbonate accumulated until the medium was replaced. Sulfide levels during the
first (days 0-60) and the last (days 160-240) incubation periods reached 2.7 mM (Table 2).
This could have been limiting the overall activity of the AOM mediating microorganisms as
2.4 (±0.1) mM sulfide was found to completely inhibit AOM and SR in reactor AP (7). In
reactor AP, sulfide levels were below 1.5 mM in the first 800 days of the reactor run, reaching

only 1.9 mM in the last 7 day period.

376

377 Microbial community of Eckernförde Bay sediment reactor. Increase in 16S rRNA gene 378 copies of ANME-2c archaea was only observed in the high pressure reactor HP-1. In the 379 ambient pressure reactor AP, only ANME2a/2b was present (6), which was verified by DGGE 380 and qPCR (Fig. 4). ANME-2a/b also showed growth at high pressure, indicating that both 381 phylotypes could grow at high methane partial pressure. Previous studies showed 382 predominance of ANME-2c archaea at high methane partial pressure (27), in interior of 383 hydrates (28), and showed a transition of ANME-2a/b to ANME-2c sequence abundance with 384 increasing sediment depth and sulfide concentration (29). Also, ANME-2a/b archaea seem to 385 exist in sediments with little or no free sulfide (30). Because ANME-2c archaea were not 386 present in reactor AP at atmospheric pressure and lower sulfide concentration, it is likely that 387 these methanotrophs do not grow at low methane pressure and that they have higher sulfide 388 tolerance. This could have resulted in higher growth rates than for ANME-2a/b. Indeed, 389 ANME-2c showed faster growth at the end of the run of reactor HP-1 as compared to 390 ANME2a/2b (Fig 4) and a shorter doubling time of 0.75 months vs. 0.97 months in the 391 exponential phase. An eventual predominance of ANME-2c in reactor HP-1 after prolonged

392	incubation time is therefore plausible. ANME-1b archaea were the least abundant
393	methanotrophs in both AOM-SR reactors, which could be explained by the continuous high
394	sulfate and low sulfide concentrations that seems to preferentially select for ANME-2 archaea.
395	Several studies showed a dominance of ANME-1 archaea in sulfate-depleted environments
396	(31) together with elevated sulfide levels (30) and it was suggested that ANME-1 could
397	perform AOM independent of sulfate reducing bacteria (32-34) or even perform
398	methanogenesis (35).
399	Archaeal DGGE bands that were intense throughout incubation of reactor HP-1 belong to the
400	MCG-15 and MBG-D (Fig. S2). The MBG-D represent 8% of our clone library sequences
401	and have been found in many cold marine (deep sea) sediments (36, 37, 38), and were
402	consistently found in bioreactors (7, 39). These archaea are related to the sulfur reducing
403	order Thermoplasmatales, and appear to include methanogens named "Methanoplasmatales"
404	(40). The MCG that were present until the end of the reactor run are abundant in marine deep
405	subsurface sediments (41). One hypothesis is that MCG archaea are heterotrophic anaerobes
406	(42) and carbon-isotopic signatures and polar lipid analysis also indicated an organic carbon
407	metabolism in sediments dominated by MCG sequences (43). Recently, it was found with
408	single cell genomic sequencing that the MCG and MBG-D archaea could play a role in
409	protein degradation (44). The batch mode of operation of our reactor implies long retention
410	time of products of endogenous activity that could function as potential new substrates. This
411	may have led to less selective enrichment and could explain the richness in archaeal diversity
412	in our reactor.
413	Deltaproteobacteria of the Eel-1 and the SEEP-SRB2 clade were present during run of
414	reactor HP-1 as qPCR and clone library results showed. Eel-1 members are closely related to
415	the marine sulfate reducer Desulfobacterium anilini (45). Most members of the SEEP-SRB2
416	are related to Dissulfuribacter thermophilus (92% similarity) and Desulfobulbus propionicus

417	DSM 2032 (89% similarity), both sulfur disproportionating bacteria (46, 47).
418	Desulforomonadales related sequences were equally abundant in the clone library as the Eel-1
419	and clustered closely to the Pelobacter genus. Pelobacter is distinguished from
420	Desulforomonas species by being able to ferment specific hydrocarbons and being unable to
421	reduce Fe(III) and/or elemental sulfur (48). Both the SEEP-SRB2 and the Eel-1 group had
422	increased in 16S rRNA gene copies at 160 days but Eel-1 decreased in abundance with reactor
423	time, in parallel with total Bacteria (Fig 6). The Eel-1 group was previously hypothesized to
424	be <i>in situ</i> directly or indirectly involved in AOM (24). We however found that only growth of
425	SEEP-SRB2 coincided with growth of ANME-2a/b with a stable ratio of around 1:2 (Fig.
426	6C), excluding at least the direct involvement of Eel-1 members in AOM. This finding,
427	together with the observed similar doubling times, could indicate that ANME2a/2b is growing
428	in consortia with SEEP-SRB2, which to our knowledge has not been shown before. ANME-
429	2c archaea could have been paired with the other most abundant Desulforomonadales. This
430	SRB group was previously found in AOM mediating enrichments (27) and in cold seep
431	sediment (29, 49). However, as with the Eel-1 group, abundance is not an indication for the
432	involvement in AOM-SR. It could be that ANME-2c is actually forming consortia with
433	SEEP-SRB2 as well, but a strong correlation was not found because ANME-2c copies were
434	very low at the start of the reactor run and increased most between 160 and 240 days. A
435	stronger correlation between ANME-2c and SEEP-SRB2 may have been found if the reactor
436	would have been monitored longer.
437	Only 2.5% of the sequences in the clone library of reactor HP-1 belong to the SEEP-SRB1
438	branch. In previous research on different AOM sediments, cloning results show a co-
439	occurrence of ANME-2 archaea and SEEP-SRB1. In contrast, when there is presence of
440	ANME-1 archaea, the Eel-1 and SEEP-SRB2 group seem to be more abundant (Table 3).
441	With microscopy techniques, other researchers recently found ANME-2c to be associated

with SEEP-SRB2 (50), or other ANME-2 partners such as *Desulfobulbus* spp. related SRB
(51, 52), and unidentified bacteria (32). Other ANME types besides ANME-2 were also found
to aggregate with SEEP-SRB1 (53, 54). Recently, a novel bacterial partner named 'HotSeep1' was found in thermophilic AOM (55) and ANME-1a was even found at 90°C in absence of
SRB (56).

447 Our findings clearly indicate that the syntrophic relationship between different types of 448 ANME and SRB is flexible and dependent on environmental factors. It was suggested before 449 that syntrophy in AOM depends on the metabolism or ecological niche of the SRB (50, 52) 450 and nitrate was suggested as the basis for niche differentiation between some groups of SRB 451 (57). Uncultivated SRB belonging to SEEP-SRB2 are dominating seep habitats and are 452 believed to be able to use non-methane hydrocarbons (50, 57). We observed growth of SEEP-453 SRB2 in reactor HP-1, indicating that this clade is indeed involved in AOM and does not need 454 other non-methane hydrocarbons for growth. More likely, environmental parameters such as 455 methane partial pressure and sulfide concentration play a key role in growth of SEEP-SRB2 456 and ANME-2c. This could explain the lack of ANME-2c and SEEP-SRB2 in reactor AP at 457 ambient methane pressure and low sulfide levels and the lack of SEEP-SRB1 at high pressure 458 and increased sulfide levels in reactor HP-1. Further studies are however needed to clarify 459 which environmental parameters are crucial and which mechanism underlies the syntrophic 460 interaction between ANME and SRB. A continuous flow bioreactor which mimics in situ 461 conditions with little disturbance, already showed differential growth dynamics between 462 ANME-1 and ANME-2 populations dependent on altering pore water flow rates (58). Similar 463 studies where only the methane partial pressure or sulfide concentration is the varying factor 464 could also give more insight into the differential growth and activity of ANME-2a/b and 465 ANME-2c phylotypes and the associated SRB.

466	Activity and microbial community of mixed sludge. Our initial activity experiments
467	showed that mixed sludge performs TMO during net methanogenesis at both 0.101 MPa CH_4
468	and 10.1 MPa CH ₄ (Table 1). Where reactor HP-1 showed increasing AOM activity during
469	long term incubation, reactor HP-2 did not. The total CO ₂ and sulfide production decreased
470	during the reactor run as endogenous substrates became depleted. Microbial analysis was
471	restricted to DGGE profiling which did not show major community changes as observed in
472	the HP reactor performing net AOM (Fig S2 and S3). This demonstrates that even at 10.1
473	MPa CH ₄ , the anaerobic community in granular sludge was not able to utilize the available
474	energy for AOM coupled to SR during 160 days of incubation or that it does not have the
475	metabolic flexibility to do so. This is in agreement with previous findings that granular sludge
476	mediates TMO during net methanogenesis (10, 59), which results in much higher ${}^{13}CO_2$
477	production rates from ${}^{13}CH_4$ than the reported carbon back flux (60). In contrast, Eckernförde
478	Bay sediment showed a clear uncoupling between the methane oxidation and the endogenous
479	methanogenic activity and a coupling of 13 CO ₂ and sulfide production after 120 days of
480	incubation. The production of $^{12}\text{CO}_2$ dropped to around 37 µmol g ⁻¹ d ⁻¹ when AOM started to
481	occur and kept on decreasing whereas the sludge reactor never reached less than 90 $\mu mol~g^{\text{-1}}$
482	d^{-1} ¹² CO ₂ production during the 160 days of reactor run. According to Hoehler <i>et al.</i> , 1994, the
483	hydrogen concentration must be low enough for AOM to occur (61). Assuming that ${}^{12}CO_2$
484	production coincides with hydrogen production from organic matter degradation in anoxic
485	sludge (62), then the hydrogen concentration was probably low enough in the Eckernförde
486	Bay sediment reactor at 110 days, but too high in the mixed sludge reactor. If we would have
487	allowed $^{12}\text{CO}_2$ production to drop as low as 37 $\mu\text{mol}\ g^{\text{-1}}\ d^{\text{-1}}$ in the sludge reactor, it maybe
488	could have allowed AOM to occur. It was shown recently that in anaerobic digestion of a
489	diverse mixture of samples, the chemical oxygen demand also drastically drops in the first
490	150 days of reactor incubation and reaches steady state at around 160 days (63). Long term

- 491 incubation is therefore indispensable to distinguish between labeled-methane oxidation during
- 492 net methanogenesis (TMO) or net anaerobic methane oxidation (AOM).
- 493

494 ACKNOWLEDGEMENTS

- 495 We want to thank all anonymous reviewers for their criticism and useful suggestions. We
- 496 want to thank Victoria Orphan and Tina Treude for fruitful discussions. This work was
- 497 supported in part by the EET program of the Dutch ministries of Economic affairs, Education,
- 498 culture and science and Environment and special planning through the Anaerobic Methane
- 499 Oxidation for Sulfate Reduction project. This research is also supported by the Dutch
- 500 Technology Foundation STW, which is part of the Netherlands Organization for Scientific
- 501 Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research
- 502 of AJMS is supported by ERC grant (project 323009) and the Gravitation grant (project
- 503 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the
- 504 Netherlands Science Foundation (NWO).

505 **REFERENCES**

- Nauhaus K, Boetius A, Kruger M, Widdel F. 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4:296-305.
- 509 2. Krüger M, Wolters H, Gehre M, Joye SB, Richnow HH. 2008. Tracing the slow
 510 growth of anaerobic methane-oxidizing communities by N-15-labelling techniques.
 511 FEMS Microbiol. Ecol. 63:401-411.
- Meulepas RJW, Jagersma CG, Khadem AF, Buisman CJN, Stams AJM, Lens
 PNL. 2009. Effect of environmental conditions on sulfate reduction with methane as
 electron donor by an Eckernforde Bay enrichment. Environ. Sci. Technol. 43:6553 6559.
- 516 4. Deusner C, Meyer V, Ferdelman TG. 2010. High-pressure systems for gas-phase
 517 free continuous incubation of enriched marine microbial communities performing
 518 anaerobic oxidation of methane. Biotechnol. Bioeng. 105:524-533.
- 5. Zhang Y, Henriet JP, Bursens J, Boon N. 2010. Stimulation of in vitro anaerobic
 oxidation of methane rate in a continuous high-pressure bioreactor. Bioresource
 Technology 101:3132-3138.
- 522 6. Jagersma GC, Meulepas RJW, Heikamp-de Jong I, Gieteling J, Klimiuk A,
 523 Schouten S, Damste JSS, Lens PNL, Stams AJM. 2009. Microbial diversity and
 524 community structure of a highly active anaerobic methane-oxidizing sulfate-reducing
 525 enrichment. Environ. Microbiol. 11:3223-3232.
- Meulepas RJW, Jagersma CG, Gieteling J, Buisman CJN, Stams AJM, Lens
 PNL. 2009. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane
 bioreactors. Biotechnol. Bioeng. 104:458-470.
- 529 8. Treude T, Kruger M, Boetius A, Jorgensen BB. 2005. Environmental control on
 530 anaerobic oxidation of methane in the gassy sediments of Eckernforde Bay (German
 531 Baltic). Limnol. Oceanogr. 50:1771-1786.
- 532 9. Barnett PRO, Watson J, Connelly D. 1984. A multiple corer for taking virtually
 533 undisturbed samples from shelf, bathyal and abyssal sediments. Oceanologica Acta.
 534 7:399-408
- Meulepas RJW, Jagersma CG, Khadem AF, Stams AJM, Lens PNL. 2010. Effect
 of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction
 by an anaerobic methanotrophic enrichment. Appl. Microbiol. 87:1499-1506.
- Meulepas RJ, Jagersma CG, Zhang Y, Petrillo M, Cai H, Buisman CJ, Stams AJ,
 Lens PN. 2010. Trace methane oxidation and the methane dependency of sulfate
 reduction in anaerobic granular sludge. FEMS Microbiol. Ecol. 72:261-271.
- 541 12. Shigematsu T, Tang YQ, Kobayashi T, Kawaguchi H, Morimura S, Kida K.
 542 2004. Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl. Environ. Microbiol.
 544 70:4048-4052.
- Lane DJ. 1991. 16S/23S rRNA sequencing, p 115-175. *In* Stackebrandt E and
 Goodfellow M (ed), Nucleic acid techniques in bacterial systematics. Wiley & Sons,
 Chichester, United Kingdom.
- 548 14. Grosskopf R, Janssen PH, Liesack W. 1998. Diversity and structure of the
 549 methanogenic community in anoxic rice paddy soil microcosms as examined by
 550 cultivation and direct 16S rRNA gene sequence retrieval. Appl. Environ. Microbiol.
 551 64:960-969.
- 552 15. Yu ZT, Garcia-Gonzalez R, Schanbacher FL, Morrison M. 2008. Evaluations of
 553 different hypervariable regions of archaeal 16S rRNA genes in profiling of

554		methanogens denaturing by Archaea-specific PCR and gradient gel electrophoresis.
555		Appl. Environ. Microbiol. 74:889-893.
556	16.	Nubel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W,
557		Backhaus H. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in
558		Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J.
559		Bacteriol. 178:5636-5643.
560	17.	Martin R, Heilig GHJ, Zoetendal EG, Smidt H, Rodriguez JM. 2007. Diversity of
561		the Lactobacillus group in breast milk and vagina of healthy women and potential role
562		in the colonization of the infant gut. J. Appl. Microbiol. 103 :2638-2644.
563	18.	Muyzer G, Dewaal EC, Uitterlinden AG. 1993. Profiling of complex microbial-
564		populations by denaturing gradient gel-electrophoresis analysis of polymerase chain
565		reaction-amplified genes-coding for 16S ribosomal-RNA. Appl. Environ. Microbiol.
566		59: 695-700.
567	19.	DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T,
568		Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a chimera-checked 16S rRNA
569		gene database and workbench compatible with ARB. Appl. Environ. Microbiol.
570		72: 5069-5072.
571	20.	Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman
572		DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database
573		search programs. Nucleic Acids Res. 25:3389-3402.
574	21.	Pruesse E, Peplies J, Glockner FO. 2012. SINA: Accurate high-throughput multiple
575		sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823-1829.
576	22.	Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J,
577		Glockner FO. 2013. The SILVA ribosomal RNA gene database project: improved
578		data processing and web-based tools. Nucleic Acids Res. 41: D590-D596.
579	23.	Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner
580		A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross
581		O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M,
582		Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke
583		M, Ludwig T, Bode A, Schleifer KH. 2004. ARB: a software environment for
584		sequence data. Nucleic Acids Res. 32:1363-1371.
585	24.	Orphan VJ, Hinrichs KU, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM,
586		Delong EF. 2001. Comparative analysis of methane-oxidizing archaea and sulfate-
587		reducing bacteria in anoxic marine sediments. Appl. Environ. Microbiol. 67:1922-
588		1934.
589	25.	Bowles MW, Samarkin VA, Joye SB. 2011. Improved measurement of microbial
590		activity in deep-sea sediments at in situ pressure and methane concentration. Limnol.
591		Oceanogr.:Methods 9:499-506
592	26.	Vossmeyer A, Deusner C, Kato C, Inagaki F, Ferdelman TG. 2012. Substrate-
593		specific pressure-dependence of microbial sulfate reduction in deep-sea cold seep
594		sediments of the Japan Trench. Front. Microbiol. 3:253.
595	27.	Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R. 2010. Identification of
596		the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the
597		ANME-2 clade. Environ. Microbiol. 12:2327-2340.
598	28.	Mills HJ, Martinez RJ, Story S, Sobecky PA. 2005. Characterization of microbial
599		community structure in Gulf of Mexico gas hydrates: Comparative analysis of DNA-
600		and RNA-derived clone libraries. Appl. Environ. Microbiol. 71:3235-3247.
601	29.	Roalkvam I, Jorgensen SL, Chen YF, Stokke R, Dahle H, Hocking WP, Lanzen
602		A, Haflidason H, Steen IH. 2011. New insight into stratification of anaerobic
		mathematranhs in cold scon sodiments EEMS Microbiol Ecol 78.222 242

604	30.	Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, Teske A.
605		2012. Anaerobic oxidation of methane at different temperature regimes in Guaymas
606		Basin hydrothermal sediments. ISME J. 6:1018-1031.
607	31.	Vigneron A, Cruaud P, Pignet P, Caprais JC, Cambon-Bonavita MA, Godfroy A,
608		Toffin L. 2013. Archaeal and anaerobic methane oxidizer communities in the Sonora
609		Margin cold seeps, Guaymas Basin (Gulf of California). ISME J. 7:1595-1608.
610	32.	Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF. 2002. Multiple
611		archaeal groups mediate methane oxidation in anoxic cold seep sediments. P. Natl.
612		Acad. Sci. USA 99: 7663-7668.
613	33.	Maignien L, Parkes RJ, Cragg B, Niemann H, Knittel K, Coulon S,
614		Akhmetzhanov A, Boon N. 2013. Anaerobic oxidation of methane in hypersaline
615		cold seep sediments. FEMS Microbiol. Ecol. 83:214-231.
616	34.	Pachiadaki MG, Kallionaki A, Dahlmann A, De Lange GJ, Kormas KA. 2011.
617		Diversity and Spatial Distribution of Prokaryotic Communities Along A Sediment
618		Vertical Profile of A Deep-Sea Mud Volcano. Microbial. Ecol. 62:655-668.
619	35.	Lloyd KG, Alperin MJ, Teske A. 2011. Environmental evidence for net methane
620		production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea.
621		Environ. Microbiol. 13:2548-2564.
622	36.	Kendall MM, Wardlaw GD, Tang CF, Bonin AS, Liu YT, Valentine DL. 2007.
623		Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated
624		methanogens, and description of Methanogenium boonei sp nov. Appl. Environ.
625		Microbiol. 73: 407-414.
626	37.	Vetriani C, Tran HV, Kerkhof LJ. 2003. Fingerprinting microbial assemblages from
627		the oxic/anoxic chemocline of the Black Sea. Appl. Environ. Microbiol. 69:6481-
628		6488.
629	38.	Orphan VJ, Hinrichs KU, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM,
630		DeLong EF. 2001. Comparative analysis of methane-oxidizing archaea and sulfate-
631		reducing bacteria in anoxic marine sediments. Environ. Microbiol. 67 :1922-1934.
632	39.	Zhang Y, Maignien L, Zhao XX, Wang FP, Boon N. 2011. Enrichment of a
633		microbial community performing anaerobic oxidation of methane in a continuous
634	10	high-pressure bioreactor. BMC Microbiol. 11: 137
635	40.	Paul K, Nonoh O, Mikulski L, Brune A. 2012. "Methanoplasmatales,"
636		Thermoplasmatales-related archaea in temite guts and other environments, are the
637	4.1	seventh order of methanogens. Appl. Environ. Microbiol. 78:8245-8253.
638	41.	Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH,
639		Horikoshi K. 2003. Microbial communities associated with geological horizons in
640		coastal subseafloor sediments from the Sea of Okhotsk. Appl. Environ. Microbiol.
641	40	09 :/224-7235.
642	42.	Teske A, Sorensen KB. 2008. Uncultured archaea in deep marine subsurface
643	12	sediments: nave we caught them all? ISME J. 2:3-18.
044 645	43.	Diddle JF, Lipp JS, Lever MA, Lioyd KG, Sorensen KD, Anderson K, Fredricks
043 646		HF, Elvert M, Keny IJ, Schrag DP, Sogin ML, Brenchey JE, Teske A, House
640 647		CH, HINFICHS KU. 2006. Heterotrophic Archaea dominate sedimentary subsurface
04/ 6/9	4.4	COSYSTEMS ON FERU. F. INdii. ACdu. SCI. USA 103:3840-3831. Lloyd KC Schweiber I. Detenson DC Kieldson KU Lever MA Steer AD
040 640	44.	Livyu NG, Schlehler L, reiersen DG, Njelusen NU, Lever MA, Sieen AD, Stanonouckog D. Dichton M. Kloindionst S. Lonk S. Schwamm A. Daulson
049 650		Jurganean R 2013 Dradominant archaea in marine sedimente degrade detrited
651		Jørgensen D. 2015. Fredominant archaea in marme sediments degrade delfildi protoine. Noture 406 ,215-218
0.51		proteins. matule 470:213-210.

652	45.	Schnell S, Bak F, Pfennig N. 1989. Anaerobic degradation of aniline and
653		dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of
654		Desulfobacterium anilini. Arch. Microbiol. 152:556-563.
655	46.	Slobodkina AL, Reysenbach AL, Slobodkina GB, Kolganova TV, Kostrikina NA,
656		Bonch-Osmolovskava EA. 2013. Dissulfuribacter thermophilus gen. nov., sp. nov., a
657		thermophilic, autotrophic, sulfur-disproportionating, deeply branching
658		deltaproteobacterium from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol.
659		63: 1967-1971
660	47	Lovley DR. Phillins E.IP. 1994 Novel Processes for Anaerobic Sulfate Production
661	.,.	from Elemental Sulfur by Sulfate-Reducing Bacteria Appl Environ Microbiol
662		60:2394-2399
663	48	Evers S. Weizenegger M. Ludwig W. Schink B. Schleifer KH. 1993 The
664	10.	nhylogenetic positions of <i>Pelobacter acetylenicus</i> and <i>Pelobacter propionicus</i> . Syst
665		Appl Microbiol 16:216-218
666	49	Orcutt RN Jove SR Kleindienst S Knittel K Ramette A Reitz A Samarkin V
667	чу.	Treude T Boetius A 2010 Impact of natural oil and higher hydrocarbons on
668		microbial diversity distribution and activity in Gulf of Mexico cold-seen sediments
669		Deen-Sea Res. Pt. II 57:2008-2021
670	50	Kleindienst S Ramette A Amann R Knittel K 2012 Distribution and in situ
671	50.	abundance of sulfate reducing bacteria in diverse marine hydrocarbon seen sediments
672		Environ Microbiol 14.2689-2710
673	51	Parnthaler A Dakas AF Brown CT Coffredi SK Embave T Ornhan VI 2008
67A	51.	Diverse syntrophic partnerships from deep sea methane vents revealed by direct call
675		capture and metagenomics P Natl Acad Sci USA 105 ,7052,7057
676	52	Vignoron A. Crueud P. Pignot P. Conrois IC. Covet N. Combon Renevite MA
677	52.	Codfroy A Toffin I 2013 Bacterial communities and syntrophic associations
678		involved in an archic oxidation of methane process of the Sonora Margin cold seens
670		Guaymas Basin Environ Microbiol doi: 10.1111/1462.2020.12324
680	53	Knittel K Lesekenn T Beeting A Kort P Amenn P 2005 Diversity and
681	55.	distribution of methanotrophic archaea at cold seens. Appl. Environ. Microbiol
687		71 • <i>A</i> 67 <i>A</i> 70
683	54	/1.40/-4/2. Losakann T. Knittal K. Nadalig T. Fuchs R. Niamann H. Roatius A. Amann R.
68/	54.	2007 Diversity and abundance of aerobic and anaerobic methane ovidizers at the
685		Haakon Moshy mud volcano. Barante Saa, Appl. Environ. Microbiol. 73 :3248,3362
686	55	Holler T. Widdel F. Knittel K. Amann R. Kellermann MV. Hinrichs KU. Teske
687	55.	A Bootius A Waganar C 2011 Thermorphilic anaerobic oxidation of mathana by
688		marine microbial consortia ISME I 5:1046 1056
680	56	Wankal SD Adams MM Johnston DT Hansal CM Java SR Circuis DD 2012
600	50.	Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on
601		asrbon flux and decoupling from sulfate reduction. Environ Microbiol 14:2726-2740
607	57	Croon Sayana A. Dakas AF. Dallaska NF. Ornhan VI. 2014. Nitrate based niche
602	57.	differentiation by distinct sulfate reducing besteric involved in the operable ovidation
604		of mothana ISME I 9:150 162
605	59	Circuit DD Cozon AF DoLong FF 2005 Growth and population dynamics of
695	58.	Gliguis F K, Cozeli AE, DeLong EF. 2005. Of own and population dynamics of
607		anacione memane-oxidizing archaea and suffate-reducing bacteria in a continuous- flow bioreaster, Appl. Environ, Microbiol. 71 ,2725, 2722
609/	50	Tow Dioreactor. Appl. Elivitori. Microbiol. 11:3/23-3/33. Zahndan A. I. Broak TD, 1080. Anagraphic methans avidation, accumance and
600	59.	acology Appl Environ Microbiol 30 ,104 204
077 700	60	COORSY. Appl. Elivitoli. Microbiol. 37:194-204. Hollon T. Waganan C. Niamann H. Daugnar C. Fandalman T.C. Daating A
700	00.	Prunner P. Widdel F. 2011. Carbon and cultur healt flux during another mismakia
/01		Diamer D , where F . 2011. Carbon and suffer back flux during anaerobic microbial

702		oxidation of methane and coupled sulfate reduction. P. Natl. Acad. Sci. 108 :1484-
703		1490.
704	61.	Hoehler TM, Alperin MJ, Albert DB, Martens CS. 1994. Field and laboratory
705		studies of methane oxidation in an anoxic marine sediment – evidence for a
706		methanogen-sulfate reducer consortium. Global Biogeochem. Cycles. 8:451-463.
707	62.	Demeril B. 2014. Major pathway of methane formation from energy crops in
708		agricultural biogas digesters. Critical Reviews in Environmental Science and
709		Technology. 44:199-222.
710	63.	Vanwonterghem I, Jensen PD, Dennis PG, Hugenholtz P, Rabaey K, Tyson GW.
711		2014. Deterministic processes guide long-term synchronised population dynamics in
712		replicate anaerobic digesters. ISME J. 8:2015-2028.
713	64.	Ku HH. 1966. Notes on Use of Propagation of Error Formulas. J. Res. N.B.SC. Eng.
714		Inst. C 70:263-273.
715	65.	Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P,
716		Amann R. 2003. Activity, distribution, and diversity of sulfate reducers and other
717		bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol. J.
718		20: 269-294.
719	66.	Harrison BK, Zhang H, Berelson W, Orphan VJ. 2009. Variations in archaeal and
720		bacterial diversity associated with the sulfate-methane transition zone in continental
721		margin sediments (Santa Barbara Basin, California). Appl. Environ. Microbiol.
722		75: 1487-1499.
723	67.	Lloyd KG, Lapham L, Teske A. 2006. Anaerobic methane-oxidizing community of
724		ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl. Environ.
725		Microbiol. 72: 7218-7230.
726	68.	Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin
727		ML, Jannasch HW. 2002. Microbial diversity of hydrothermal sediments in the
728		Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ.
729		Microbiol. 68: 1994-2007.
730		

AEM Accepts published online ahead of print

- 731 **Fig. 1** Schematic representation of the different experiments performed in this study.
- Experiment 0 represents the study of reactor AP published previously (6,7) and the original
- 733 Eckernförde Bay sediment (EB) of which samples were stored and analyzed in this study.
- Experiment 1 and 2 were fully conducted in this study. The piston picture was modified with
- permission from ref. 11.

- **Fig. 2** The ¹³CO₂(\circ), ¹²CO₂(Δ), ¹²CH₄(x) and sulfide (\Box) production rates derived from the ambient pressure activity measurements with ¹³CH₄ of sampled capsules of reactor HP-1 (A)
- and reactor HP-2 (B) after different periods of incubation at 10.1 MPa 12 CH₄ and 20°C. Error
- bars represent standard deviations from independent measurements.

740	Fig. 3 Phylogenetic tree of 16S rRNA gene sequences from an archaeal clone library
741	constructed of a sample taken at 240 days of incubation of reactor HP-1. The tree was
742	constructed with the ARB neighbor-joining method with terminal filtering and jukes-cantor
743	correction using almost full length 16S rRNA sequences. Clones detected in this study are
744	indicated in bold. The numbers in parenthesis indicate the number of sequences found of each
745	phylotype. Closed circles represent bootstrap values >70% (1000 replicates). The scale bar
746	represents the percentage of changes per nucleotide position.

- 747 Fig. 4 Absolute 16S rRNA gene abundance of ANME-2a/b and total Archaea (A) and
- ANME-2c (B) in reactor HP-1 sampled in duplicate (A and B) at 60, 110 and 160 days,
- except at 240 days. Results are compared to the ambient pressure reactor (AP) and the
- 750 Eckernförde bay sediment inoculum (EB). Standard deviations represent triplicate analysis.

752	constructed of a sample taken at 240 days of incubation of reactor HP-1. The tree shows only
753	the canonical sulfate-reducing bacterial phylotypes found. The tree was constructed with the
754	ARB neighbor-joining method with terminal filtering and jukes-cantor correction using
755	almost full length 16S rRNA sequences. Clones detected in this study are indicated in bold.
756	The numbers in parenthesis indicate the number of sequences found of each phylotype.
757	Closed circles represent bootstrap values >70% (1000 replicates). The tree outgroup
758	Clostridium was removed after tree construction. The scale bar represents the percentage of
759	changes per nucleotide position.

Fig. 5 Phylogenetic tree of 16S rRNA gene sequences from a bacterial clone library

751

Fig. 6 Absolute 16S rRNA gene abundance of SEEP-SRB2 and Eel-1 group (A) and total *Bacteria* (B) with standard deviations representing triplicate analysis and the ratio of ANME2a/b and SEEP-SRB2 (C) with combined standard deviations calculated as described (64).
Reactor HP-1 was sampled in duplicate (A and B) at 60, 110, 160 days, except at 240 days
and was compared to the ambient pressure reactor (AP) and the Eckernförde bay sediment
inoculum (EB).

TABLE 1 Initial activity experiment with the ${}^{13}CO_2$, and ${}^{12}CH_4$ production rates by

Eckernförde Bay sediment and mixed sludge at 0.101 and 10.1 MPa ¹³CH₄^a

768 769

	Eckernförde B	ay sediment	Mixed sludge			
Production rates	0.101 MPa ¹³ CH ₄	10.1 MPa ¹³ CH ₄	0.101 MPa ¹³ CH ₄	10.1 MPa ¹³ CH ₄		
	$(\mu mol g_{VSS}^{-1} da)$	ny ⁻¹)	$(\mu mol g_{VSS}^{-1} day^{-1})$			
¹³ CO ₂	5.8 (±0.3)	20.9 (±4.5)	8.6 (±0.9)	16.3 (±6.2)		
¹² CH ₄	8.5 (±1.4)	0.0 (±0.1)	47.1 (±1.9)	36.6 (±7.3)		

770

^a Standard deviations represent biological triplicates of 0.02 g VSS inoculum per glass tube

772	TABLE 2 Sulfide concentration	in reactor HP-1	inoculated with	h Eckernförde bay	sediment
				1	

-
2.7
2.7
1.5
2.1
2.7

Sampling site	Eel River Basin		Hydrate Ridge	Santa Barbara	Gulf of Mexico	Guaymas Basin		Santa Barbara			Eckernförde Bay		
	0-4 cm	20-22 cm	4-7 cm	Beggiatoa Mat	139 cm	15-18 cm	Core A	Core C	13-16 cm	HR	Isis	Reactor AP	
Reference	(24)		(65, 53)	(66)	(67)	(58)	(24)	(2	:7)	(6)	This research	
Archaea													
ANME-1	++	++	+	+	+	+	+	-	-	-	-	-	+
ANME-2	+	+	++	++			-	+	+	+	+	+	++
Bacteria													
SEEP-SRB1	+	+	+	++	+		-	+	+	++	++	++	+
SEEP-SRB2	+	+	-	+	-	++	+	-	-	-	-	+	++
SEEP-SRB3	+	-	+	+			+		-				-
SEEP-SRB4				+				+					-
Eel-1	+	+	-	-	++	+	-	-	-	-	-	+	+
Eel-3	+	-	-	l					+				-

776	TABLE 3 An overview of archaeal and bacterial 16S rRNA genes detected in different studies on AOM mediating marine sediments	,t
-----	--	----

778 ^b Symbols represent presence (+), dominance (++) or absence (-) of 16S rRNA gene sequences. HR = Hydrate ridge, Isis = Isis mud volcano

AEM Accepts published online ahead of print

10%

