10 research outputs found

    Hydrothermal plume dynamics on Europa : implications for chaos formation

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): E03008, doi:10.1029/2003JE002073.Hydrothermal plumes may be responsible for transmitting radiogenic or tidally generated heat from Europa's rocky interior through a liquid ocean to the base of its ice shell. This process has been implicated in the formation of chaos regions and lenticulae by melting or exciting convection in the ice layer. In contrast to earlier work, we argue that Europa's ocean should be treated as an unstratified fluid. We have adapted and expanded upon existing work describing buoyant plumes in a rotating, unstratified environment. We discuss the scaling laws governing the flow and geometry of plumes on Europa and perform a laboratory experiment to obtain scaling constants and to visualize plume behavior in a Europa-like parameter regime. We predict that hydrothermal plumes on Europa are of a lateral scale (at least 25–50 km) comparable to large chaos regions; they are too broad to be responsible for the formation of individual lenticulae. Plume heat fluxes (0.1–10 W/m2) are too weak to allow complete melt-through of the ice layer. Current speeds in the plume (3–8 mm/s) are much slower than indicated by previous studies. The observed movement of ice blocks in the Conamara Chaos region is unlikely to be driven by such weak flow

    Sea surface temperature control on the distribution of far-traveled Southern Ocean ice-rafted detritus during the Pliocene

    Get PDF
    The flux and provenance of ice-rafted detritus (IRD) deposited in the Southern Ocean can reveal information about the past instability of Antarctica's ice sheets during different climatic conditions. Here we present a Pliocene IRD provenance record based on the Ar/Ar ages of ice-rafted hornblende grains from Ocean Drilling Program Site 1165, located near Prydz Bay in the Indian Ocean sector of the Southern Ocean, along with the results of modeled sensitivity tests of iceberg trajectories and their spatial melting patterns under a range of sea surface temperatures (SSTs). Our provenance results reveal that IRD and hence icebergs in the Prydz Bay area were mainly sourced from (i) the local Prydz Bay region and (ii) the remote Wilkes Land margin located at the mouth of the low-lying Aurora Subglacial Basin. A series of IRD pulses, reaching up to 10 times background IRD flux levels, were previously identified at Site 1165 between 3.3 and 3.0Ma. Our new results reveal that the average proportion of IRD sourced from distal Wilkes Land margin doubles after 3.3Ma. Our iceberg trajectory-melting models show that slower iceberg melting under cooling SSTs over this middle Pliocene interval allowed Wilkes Land icebergs to travel farther before melting. Hence, declining SSTs can account for a large part of the observed IRD provenance record at Site 1165. In early Pliocene IRD layers, sampled at suborbital resolution around 4.6Ma, we find evidence for significant increases in icebergs derived from Wilkes Land during very warm interglacials. This is suggestive of large-scale destabilization of the East Antarctic Ice Sheet in the Aurora Subglacial Basin, as far-traveled icebergs would have to overcome enhanced melting in warmer SSTs. Our results highlight the importance of considering SSTs when interpreting IRD flux and provenance records in distal locations

    Modeling giant iceberg drift under the influence of sea ice in the Weddell Sea

    Get PDF
    The drift trajectory of giant iceberg C-7 traversing the Weddell Sea for more than 2-years wassuccessfully simulated. Application of the "classical" driving forces like wind and ocean currentsresulted in a significant discrepancy between modeled and observed iceberg velocities in thewestern Weddell Sea. The most realistic drift pattern in space and time was achieved by addinga sea ice force which represents the ability of a dense sea ice cover (>90%) to lock in icebergsand collect the momentum of the wind over a vast area. This process was parameterized using asea ice strength 'P' which depends on sea ice concentration and thickness, both having highestvalues in winter and in the perennial covered western Weddell Sea. As a consequence of thesensitivity to sea ice the timing of the iceberg drift becomes important, revealing the region offBrunt Ice Shelf (eastern Weddell Sea) as a location where bergs either continue westward withthe coastal current or follow a southern branch onto the shallow continental shelf

    High primary productivity in an ice melting hot spot at the eastern boundary of the Weddell Gyre

    Get PDF
    The Southern Ocean (SO) plays a key role in modulating atmospheric CO 2 via physical and biological processes. However, over much of the SO, biological activity is iron-limited. New in situ data from the Antarctic zone south of Africa in a region centered at ~20°E-25°E reveal a previously overlooked region of high primary production, comparable in size to the northwest African upwelling region. Here, sea ice together with enclosed icebergs is channeled by prevailing winds to the eastern boundary of the Weddell Gyre, where a sharp transition to warmer waters causes melting. This cumulative melting provides a steady source of iron, fuelling an intense phytoplankton bloom that is not fully captured by monthly satellite production estimates. These findings imply that future changes in sea-ice cover and dynamics could have a significant effect on carbon sequestration in the SO

    Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer

    No full text
    Purpose To characterise the prevalence of pathogenic germline mutations in BRCA1 and BRCA2 in families with breast cancer (BC) and ovarian cancer (OC) history. Patients and methods Data from 21 401 families were gathered between 1996 and 2014 in a clinical setting in the German Consortium for Hereditary Breast and Ovarian Cancer, comprising full pedigrees with cancer status of all individual members at the time of first counselling, and BRCA1/2 mutation status of the index patient. Results The overall BRCA1/2 mutation prevalence was 24.0% (95% CI 23.4% to 24.6%). Highest mutation frequencies were observed in families with at least two OCs (41.9%, 95% CI 36.1% to 48.0%) and families with at least one breast and one OC (41.6%, 95% CI 40.3% to 43.0%), followed by male BC with at least one female BC or OC (35.8%; 95% CI 32.2% to 39.6%). In families with a single case of early BC (<36 years), mutations were found in 13.7% (95% CI 11.9% to 15.7%). Postmenopausal unilateral or bilateral BC did not increase the probability of mutation detection. Occurrence of premenopausal BC and OC in the same woman led to higher mutation frequencies compared with the occurrence of these two cancers in different individuals (49.0%; 95% CI 41.0% to 57.0% vs 31.5%; 95% CI 28.0% to 35.2%). Conclusions Our data provide guidance for healthcare professionals and decision-makers to identify individuals who should undergo genetic testing for hereditary breast and ovarian cancer. Moreover, it supports informed decision-making of counselees on the uptake of genetic testing

    References

    No full text
    corecore