165 research outputs found
Monte Carlo Simulation Calculation of Critical Coupling Constant for Continuum \phi^4_2
We perform a Monte Carlo simulation calculation of the critical coupling
constant for the continuum {\lambda \over 4} \phi^4_2 theory. The critical
coupling constant we obtain is [{\lambda \over \mu^2}]_crit=10.24(3).Comment: 11 pages, 4 figures, LaTe
Systematic review with meta-analysis: cytokines in fibromyalgia syndrome
<p>Abstract</p> <p>Background</p> <p>To perform a systematic review and meta-analysis on cytokine levels in patients with fibromyalgia syndrome (FMS).</p> <p>Methods</p> <p>Through December 2010 we systematically reviewed the databases PubMed, MEDLINE, and PsycINFO and screened the reference lists of 22 review articles for suitable original articles. Original articles investigating cytokines in patients with FMS were included. Data were extracted by two independent authors. Differences of the cytokine levels of FMS patients and controls were summarized by standardized mean differences (SMD) using a random effects model. Study quality was assessed applying methodological scores: modified Center of Evidence Based Medicine, Newcastle-Ottawa-Scale, and Würzburg Methodological Quality Score.</p> <p>Results</p> <p>Twenty-five articles were included investigating 1255 FMS patients and 800 healthy controls. Data of 13/25 studies entered meta-analysis. The overall methodological quality of studies was low. The results of the majority of studies were not comparable because methods, investigated material, and investigated target cytokines differed. Systematic review of the selected 25 articles revealed that FMS patients had higher serum levels of interleukin (IL)-1 receptor antagonist, IL-6, and IL-8, and higher plasma levels of IL-8. Meta-analysis of eligible studies showed that FMS patients had higher plasma IL-6 levels compared to controls (SMD = -0.34 [-0.64, -0.03] 95% CI; p = 0.03). The majority of investigated cytokines were not different between patients and controls.</p> <p>Conclusions</p> <p>The pathophysiological role of cytokines in FMS is still unclear. Studies of higher quality and with higher numbers of subjects are needed.</p
Quantum dynamics and thermalization for out-of-equilibrium phi^4-theory
The quantum time evolution of \phi^4-field theory for a spatially homogeneous
system in 2+1 space-time dimensions is investigated numerically for
out-of-equilibrium initial conditions on the basis of the Kadanoff-Baym
equations including the tadpole and sunset self-energies. Whereas the tadpole
self-energy yields a dynamical mass, the sunset self-energy is responsible for
dissipation and an equilibration of the system. In particular we address the
dynamics of the spectral (`off-shell') distributions of the excited quantum
modes and the different phases in the approach to equilibrium described by
Kubo-Martin-Schwinger relations for thermal equilibrium states. The
investigation explicitly demonstrates that the only translation invariant
solutions representing the stationary fixed points of the coupled equation of
motions are those of full thermal equilibrium. They agree with those extracted
from the time integration of the Kadanoff-Baym equations in the long time
limit. Furthermore, a detailed comparison of the full quantum dynamics to more
approximate and simple schemes like that of a standard kinetic (on-shell)
Boltzmann equation is performed. Our analysis shows that the consistent
inclusion of the dynamical spectral function has a significant impact on
relaxation phenomena. The different time scales, that are involved in the
dynamical quantum evolution towards a complete thermalized state, are discussed
in detail. We find that far off-shell 1 3 processes are responsible for
chemical equilibration, which is missed in the Boltzmann limit. Finally, we
address briefly the case of (bare) massless fields. For sufficiently large
couplings we observe the onset of Bose condensation, where our scheme
within symmetric \phi^4-theory breaks down.Comment: 77 pages, 26 figure
Biodiversity into your hands - A call for a virtual global natural history 'metacollection'
10.1186/1742-9994-10-55Frontiers in Zoology101
Assessing the effectiveness of protected areas for conserving range‐restricted rain forest butterflies in Sabah, Borneo
Rain forests on Borneo support exceptional concentrations of endemic insect biodiversity, but many of these forest‐dependent species are threatened by land‐use change. Totally protected areas (TPAs) of forest are key for conserving biodiversity, and we examined the effectiveness of the current TPA network for conserving range‐restricted butterflies in Sabah (Malaysian Borneo). We found that mean diurnal temperature range and precipitation of the wettest quarter of the year were the most important predictors of butterfly distributions (N = 77 range‐restricted species), and that species richness increased with elevation and aboveground forest carbon. On average across all species, TPAs were effective at conserving ~43% of species’ ranges, but encompassed only ~40% of areas with high species richness (i.e., containing at least 50% of our study species). The TPA network also included only 33%–40% of areas identified as high priority for conserving range‐restricted species, as determined by a systematic conservation prioritization analysis. Hence, the current TPA network is reasonably effective at conserving range‐restricted butterflies, although considerable areas of high species richness (6,565 km2) and high conservation priority (11,152–12,531 km2) are not currently protected. Sabah's remaining forests, and the range‐restricted species they support, are under continued threat from agricultural expansion and urban development, and our study highlights important areas of rain forest that require enhanced protection.
Abstract in Malay is available with online material
Virtual reality exposure therapy as treatment for pain catastrophizing in fibromyalgia patients: proof-of-concept study (Study Protocol)
<p>Abstract</p> <p>Background</p> <p>Albeit exercise is currently advocated as one of the most effective management strategies for fibromyalgia syndrome (FMS); the implementation of exercise as a FMS treatment in reality is significantly hampered by patients' poor compliance. The inference that pain catastrophizing is a key predictor of poor compliance in FMS patients, justifies considering the alteration of pain catastrophizing in improving compliance towards exercises in FMS patients. The aim of this study is to provide proof-of-concept for the development and testing of a novel virtual reality exposure therapy (VRET) program as treatment for exercise-related pain catastrophizing in FMS patients.</p> <p>Methods</p> <p>Two interlinked experimental studies will be conducted. Study 1 aims to objectively ascertain if neurophysiological changes occur in the functional brain areas associated with pain catastrophizing, when catastrophizing FMS subjects are exposed to visuals of exercise activities. Study 2 aims to ascertain the preliminary efficacy and feasibility of exposure to visuals of exercise activities as a treatment for exercise-related pain catastrophizing in FMS subjects. Twenty subjects will be selected from a group of FMS patients attending the Tygerberg Hospital in Cape Town, South Africa and randomly allocated to either the <b>VRET </b>(intervention) group or <b>waiting list </b>(control) group. Baseline neurophysiological activity for subjects will be collected in study 1 using functional magnetic resonance imaging (fMRI). In study 2, clinical improvement in pain catastrophizing will be measured using fMRI (objective) and the pain catastrophizing scale (subjective).</p> <p>Discussion</p> <p>The premise is if exposing FMS patients to visuals of various exercise activities trigger the functional brain areas associated with pain catastrophizing; then as a treatment, repeated exposure to visuals of the exercise activities using a VRET program could possibly decrease exercise-related pain catastrophizing in FMS patients. Proof-of-concept will either be established or negated. The results of this project are envisaged to revolutionize FMS and pain catastrophizing research and in the future, assist health professionals and FMS patients in reducing despondency regarding FMS management.</p> <p>Trial registration</p> <p>PACTR201011000264179</p
EULAR revised recommendations for the management of fibromyalgia
Objective The original European League Against Rheumatism recommendations for managing fibromyalgia assessed evidence up to 2005. The paucity of studies meant that most recommendations were ‘expert opinion’.
Methods A multidisciplinary group from 12 countries assessed evidence with a focus on systematic reviews and meta-analyses concerned with pharmacological/non-pharmacological management for fibromyalgia. A review, in May 2015, identified eligible publications and key outcomes assessed were pain, fatigue, sleep and daily functioning. The Grading of Recommendations Assessment, Development and Evaluation system was used for making recommendations.
Results 2979 titles were identified: from these 275 full papers were selected for review and 107 reviews (and/or meta-analyses) evaluated as eligible. Based on meta-analyses, the only ‘strong for’ therapy-based recommendation in the guidelines was exercise. Based on expert opinion, a graduated approach, the following four main stages are suggested underpinned by shared decision-making with patients. Initial management should involve patient education and focus on non-pharmacological therapies. In case of non-response, further therapies (all of which were evaluated as ‘weak for’ based on meta-analyses) should be tailored to the specific needs of the individual and may involve psychological therapies (for mood disorders and unhelpful coping strategies), pharmacotherapy (for severe pain or sleep disturbance) and/or a multimodal rehabilitation programme (for severe disability).
Conclusions These recommendations are underpinned by high-quality reviews and meta-analyses. The size of effect for most treatments is relatively modest. We propose research priorities clarifying who will benefit from specific interventions, their effect in combination and organisation of healthcare systems to optimise outcome
- …