30 research outputs found

    Long-term outcome in dogs with chronic enteropathies: 203 cases

    Get PDF

    Family-level sampling of mitochondrial genomes in coleoptera: compositional heterogeneity and phylogenetics

    Get PDF
    Mitochondrial genomes are readily sequenced with recent technology and thus evolutionary lineages can be sampled more densely. This permits better phylogenetic estimates and assessment of potential biases resulting from heterogeneity in nucleotide composition and rate of change. We gathered 245 mitochondrial sequences for the Coleoptera representing all 4 suborders, 15 superfamilies of Polyphaga, and altogether 97 families, including 159 newly sequenced full or partial mitogenomes. Compositional heterogeneity greatly affected 3rd codon positions, and to a lesser extent the 1st and 2nd positions, even after RY coding. Heterogeneity also affected the encoded protein sequence, in particular in the nad2, nad4, nad5 and nad6 genes. Credible tree topologies were obtained with the nhPhyML (‘non-homogeneous’) algorithm implementing a model for branch-specific equilibrium frequencies. Likelihood searches using RAxML were improved by data partitioning by gene and codon position. Finally, the PhyloBayes software, which allows different substitution processes for amino acid replacement at various sites, produced a tree that best matched known higher-level taxa and defined basal relationships in Coleoptera. After rooting with Neuropterida outgroups, suborder relationships were resolved as (Polyphaga (Myxophaga (Archostemata + Adephaga))). The infraorder relationships in Polyphaga were (Scirtiformia (Elateriformia (Staphyliniformia + Scarabaeiformia (Bostrichiformia (Cucujiformia)))). Polyphagan superfamilies were recovered as monophyla except Staphylinoidea (paraphyletic for Scarabaeiformia) and Cucujoidea, which can no longer be considered a valid taxon. The study shows that, whilst compositional heterogeneity is not universal, it cannot be eliminated for some mitochondrial genes, but dense taxon sampling and the use of appropriate Bayesian analyses can still produce robust phylogenetic trees

    Individual goal-oriented cognitive rehabilitation to improve everyday functioning for people with early-stage dementia: a multi-centre randomised controlled trial (the GREAT trial)

    Get PDF
    YesObjectives: To determine whether individual goal-oriented cognitive rehabilitation (CR) improves everyday functioning for people with mild-to-moderate dementia. Design and methods: Parallel group multi-centre single-blind randomised controlled trial (RCT) comparing CR added to usual treatment (CR) with usual treatment alone (TAU) for people with an ICD-10 diagnosis of Alzheimer’s, vascular or mixed dementia and mild-to-moderate cognitive impairment (MMSE score ≥ 18), and with a family member willing to contribute. Participants allocated to CR received ten weekly sessions over three months and four maintenance sessions over six months. Participants were followed up three and nine months post-randomisation by blinded researchers. The primary outcome was self-reported goal attainment at three months. Secondary outcomes at three and nine months included informant-reported goal attainment, quality of life, mood, self-efficacy, and cognition, and study partner stress and quality of life. Results: We randomised (1:1) 475 people with dementia; 445 (CR=281) were included in the intention to treat analysis at three months, and 426 (CR=208) at nine months. At three months there were statistically-significant large positive effects for participant-rated goal attainment (d=0.97, 95% CI 0.75 to 1.19), corroborated by informant ratings (d=1.11, 0.89 to 1.34). These effects were maintained at nine months for both participant (d=0.94, 0.71 to 1.17) and informant ratings (d=0.96, 0.73 to 1.2). The observed gains related to goals directly targeted in the therapy. There were no significant differences in secondary outcomes. Conclusions: Cognitive rehabilitation enables people with early-stage dementia to improve their everyday functioning in relation to individual goals targeted in the therapy.National Institute for Health, Health Technology Assessment Programme, Grant/Award Number: 11/15/0

    Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics

    Get PDF
    Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags (‘barcodes’). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three ‘bait’ sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species ‘barcodes’ that currently use the cox1 gene only

    The tree that hides the forest: Cryptic diversity and phylogenetic relationships in the Palaearctic vector Obsoletus/Scoticus Complex (Diptera: Ceratopogonidae) at the European level

    Get PDF
    Background: Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex. Methods: Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex. Results: Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus. Conclusions: To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region.[Figure not available: See fulltext.

    The tree that hides the forest: cryptic diversity and phylogenetic relationships in the Palaearctic vector Obsoletus/Scoticus Complex (Diptera: Ceratopogonidae) at the European level

    Get PDF
    Abstract Background Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex. Methods Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex. Results Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus. Conclusions To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region

    DNA barcoding of Schistosoma haematobium on Zanzibar reveals substantial genetic diversity and two major phylogenetic groups.

    No full text
    To shed light on the genetic diversity of Schistosoma haematobium on Zanzibar a DNA barcoding study was performed on parasite material isolated from different time-points 4 years apart. Substantive sequence variation was found within the mitochondrial cytochrome oxidase subunit I (cox1) and the NADH-dehydrogenase subunit 1 (nad1) with 27 and 22 unique haplotypes identified respectively and 38 when both gene regions were considered. Upon phylogenetic analysis and comparison with other S. haematobium isolates, haplotypes or barcode types partitioned into two discrete major groups, designated Group 1 and Group 2. Whilst Group 1 isolates were recovered from both Zanzibar and the African mainland, Group 2 isolates were exclusive to Zanzibar. A mixture of Group 1 and 2 parasites were recovered from individual children with no child shedding parasites of a single group haplotype alone. Whilst changes in general levels of genetic diversity between the two parasite isolation time-points were observed, no obvious change in genetic diversity was detected, despite large-scale drug distribution of praziquantel during the intervening period and there was no biased of Group 1 or 2 parasites persisting at the different time-points. To assist in future genetic screening of schistosome larval stages e.g. eggs, miracidia or cercariae, two new DNA-typing assays based on group-specific PCR primers and SNaPshot™ probes have been developed to distinguish Group 1 and 2 haplotypes
    corecore