3,006 research outputs found

    Constitutive model of AISI 1035 at high temperature

    Get PDF
    Use Gleeble-1500D thermal simulation test machine to conduct thermal tensile test on AISI 1035 in the deformation temperature range of 1 173,15~1 373,15 K and strain rate range of 0,2 ~ 20 s-1. Using the obtained true stress-strain curves, an intrinsic model of the material was constructed using a model considering strain compensation. The results showed that the correlation coefficient of the Arrhenius model of AISI 1035 considering strain compensation was 0,984 with an average absolute error of 3,550 %, which can accurately predict the flow profitability. The experimental data matched well with the prediction curves obtained from the model calculation, which verified the feasibility of the model

    Constitutive model of AISI 1035 at high temperature

    Get PDF
    Use Gleeble-1500D thermal simulation test machine to conduct thermal tensile test on AISI 1035 in the deformation temperature range of 1 173,15~1 373,15 K and strain rate range of 0,2 ~ 20 s-1. Using the obtained true stress-strain curves, an intrinsic model of the material was constructed using a model considering strain compensation. The results showed that the correlation coefficient of the Arrhenius model of AISI 1035 considering strain compensation was 0,984 with an average absolute error of 3,550 %, which can accurately predict the flow profitability. The experimental data matched well with the prediction curves obtained from the model calculation, which verified the feasibility of the model

    Single-qubit lasing in the strong-coupling regime

    Full text link
    Motivated by recent ``circuit QED'' experiments we study the lasing transition and spectral properties of single-qubit lasers. In the strong coupling, low-temperature regime quantum fluctuations dominate over thermal noise and strongly influence the linewidth of the laser. When the qubit and the resonator are detuned, amplitude and phase fluctuations of the radiation field are coupled, and the phase diffusion model, commonly used to describe conventional lasers, fails. We predict pronounced effects near the lasing transition, with an enhanced linewidth and non-exponential decay of the correlation functions. We cover a wide range of parameters by using two complementary approaches, one based on the Liouville equation in a Fock state basis, covering arbitrarily strong coupling but limited to low photon numbers, the other based on the coherent-state representation, covering large photon numbers but restricted to weak or intermediate coupling.Comment: 11 pages, 11 figure

    15% reduction in AC loss of a 3-phase 1 MVA HTS transformer by exploiting asymmetric conductor critical current

    Get PDF
    An asymmetric dependence of the critical current on the direction of an applied magnetic field in HTS coated conductors has a non-trivial influence on the AC loss of coil windings. We report the modelled influence of real conductor critical current asymmetry on the AC loss characteristics of a 1 MVA HTS transformer design previously demonstrated by the Robinson Research Institute as well as a stand-alone coil having the same geometrical and electrical parameters as the low voltage (high current) winding of the transformer. We compare two commercial HTS conductors with distinctive differences in their critical current asymmetry and show a maximum variation of 15% and 29% in the calculated AC loss of the transformer and the stand-alone coil winding, respectively, when the conductor orientation is varied in the top and bottom halves of the windings. AC loss simulation giving consideration to asymmetric conductor critical current before winding the transformer could lead to substantial AC loss reduction even using the same amount of conductor and the same transformer design

    SU(2)xU(1) unified theory for charge, orbit and spin currents

    Full text link
    Spin and charge currents in systems with Rashba or Dresselhaus spin-orbit couplings are formulated in a unified version of four-dimensional SU(2)×\timesU(1) gauge theory, with U(1) the Maxwell field and SU(2) the Yang-Mills field. While the bare spin current is non-conserved, it is compensated by a contribution from the SU(2) gauge field, which gives rise to a spin torque in the spin transport, consistent with the semi-classical theory of Culcer et al. Orbit current is shown to be non-conserved in the presence of electromagnetic fields. Similar to the Maxwell field inducing forces on charge and charge current, we derive forces acting on spin and spin current induced by the Yang Mills fields such as the Rashba and Dresselhaus fields and the sheer strain field. The spin density and spin current may be considered as a source generating Yang-Mills field in certain condensed matter systems.Comment: Revtex, 6 pages, section IV revised, to be published in Journal of Physics

    The XMM-Newton serendipitous ultraviolet source survey catalogue

    Get PDF
    The XMM-Newton Serendipitous Ultraviolet Source Survey (XMM-SUSS) is a catalogue of ultraviolet (UV) sources detected serendipitously by the Optical Monitor (XMM-OM) on-board the XMM-Newton observatory. The catalogue contains ultraviolet-detected sources collected from 2,417 XMM-OM observations in 1-6 broad band UV and optical filters, made between 24 February 2000 and 29 March 2007. The primary contents of the catalogue are source positions, magnitudes and fluxes in 1 to 6 passbands, and these are accompanied by profile diagnostics and variability statistics. The XMM-SUSS is populated by 753,578 UV source detections above a 3 sigma signal-to-noise threshold limit which relate to 624,049 unique objects. Taking account of substantial overlaps between observations, the net sky area covered is 29-54 square degrees, depending on UV filter. The magnitude distributions peak at 20.2, 20.9 and 21.2 in UVW2, UVM2 and UVW1 respectively. More than 10 per cent of sources have been visited more than once using the same filter during XMM-Newton operation, and > 20 per cent of sources are observed more than once per filter during an individual visit. Consequently, the scope for science based on temporal source variability on timescales of hours to years is broad. By comparison with other astrophysical catalogues we test the accuracy of the source measurements and define the nature of the serendipitous UV XMM-OM source sample. The distributions of source colours in the UV and optical filters are shown together with the expected loci of stars and galaxies, and indicate that sources which are detected in multiple UV bands are predominantly star-forming galaxies and stars of type G or earlier.Comment: Accepted for publication in MNRA

    Integrating Optoelectronic Tweezers for Individual Particle Manipulation with Digital Microfluidics Using Electrowetting-On-Dielectric (EWOD)

    Full text link
    This paper presents the integration of two powerful technologies: manipulation of droplets (i.e., digital microfluidics) using electrowetting-on-dielectric (EWOD) and manipulation of individual particle inside the droplets using optoelectronic tweezers (OET). A novel platform for maintaining a viable cell culture environment is proposed as an application example, in which EWOD operations bring droplets containing cells, medium and waste into and out of the cell environment and OET operations address and manipulate the individual cells in coordination with the fluidic operations. Functions of EWOD and OET required to realize the concept are demonstrated. 1

    Challenging GRB models through the broadband dataset of GRB060908

    Get PDF
    Context: Multiwavelength observations of gamma-ray burst prompt and afterglow emission are a key tool to disentangle the various possible emission processes and scenarios proposed to interpret the complex gamma-ray burst phenomenology. Aims: We collected a large dataset on GRB060908 in order to carry out a comprehensive analysis of the prompt emission as well as the early and late afterglow. Methods: Data from Swift-BAT, -XRT and -UVOT together with data from a number of different ground-based optical/NIR and millimeter telescopes allowed us to follow the afterglow evolution from about a minute from the high-energy event down to the host galaxy limit. We discuss the physical parameters required to model these emissions. Results: The prompt emission of GRB060908 was characterized by two main periods of activity, spaced by a few seconds of low intensity, with a tight correlation between activity and spectral hardness. Observations of the afterglow began less than one minute after the high-energy event, when it was already in a decaying phase, and it was characterized by a rather flat optical/NIR spectrum which can be interpreted as due to a hard energy-distribution of the emitting electrons. On the other hand, the X-ray spectrum of the afterglow could be fit by a rather soft electron distribution. Conclusions: GRB060908 is a good example of a gamma-ray burst with a rich multi-wavelength set of observations. The availability of this dataset, built thanks to the joint efforts of many different teams, allowed us to carry out stringent tests for various interpretative scenarios showing that a satisfactorily modeling of this event is challenging. In the future, similar efforts will enable us to obtain optical/NIR coverage comparable in quality and quantity to the X-ray data for more events, therefore opening new avenues to progress gamma-ray burst research.Comment: A&A, in press. 11 pages, 5 figure
    corecore