299 research outputs found

    StarGO: A New Method to Identify the Galactic Origins of Halo Stars

    Full text link
    We develop a new method StarGO (Stars' Galactic Origin) to identify the galactic origins of halo stars using their kinematics. Our method is based on self-organizing map (SOM), which is one of the most popular unsupervised learning algorithms. StarGO combines SOM with a novel adaptive group identification algorithm with essentially no free parameters. In order to evaluate our model, we build a synthetic stellar halo from mergers of nine satellites in the Milky Way. We construct the mock catalogue by extracting a heliocentric volume of 10 kpc from our simulations and assigning expected observational uncertainties corresponding to bright stars from Gaia DR2 and LAMOST DR5. We compare the results from StarGO against that from a Friends-of-Friends (FoF) based method in the space of orbital energy and angular momentum. We show that StarGO is able to systematically identify more satellites and achieve higher number fraction of identified stars for most of the satellites within the extracted volume. When applied to data from Gaia DR2, StarGO will enable us to reveal the origins of the inner stellar halo in unprecedented detail.Comment: 11 pages, 7 figures, Accepted for publication in Ap

    MRI signal phase oscillates with neuronal activity in cerebral cortex: implications for neuronal current imaging

    Get PDF
    Neuronal activity produces transient ionic currents that may be detectable using magnetic resonance imaging (MRI). We examined the feasibility of MRI-based detection of neuronal currents using computer simulations based on the laminar cortex model (LCM). Instead of simulating the activity of single neurons, we decomposed neuronal activity to action potentials (AP) and postsynaptic potentials (PSP). The geometries of dendrites and axons were generated dynamically to account for diverse neuronal morphologies. Magnetic fields associated with APs and PSPs were calculated during spontaneous and stimulated cortical activity, from which the neuronal current induced MRI signal was determined. We found that the MRI signal magnitude change (< 0.1 ppm) is below currently detectable levels but that the signal phase change is likely to be detectable. Furthermore, neuronal MRI signals are sensitive to temporal and spatial variations in neuronal activity but independent of the intensity of neuronal activation. Synchronised neuronal activity produces large phase changes (in the order of 0.1 mrad). However, signal phase oscillates with neuronal activity. Consequently, MRI scans need to be synchronised with neuronal oscillations to maximise the likelihood of detecting signal phase changes due to neuronal currents. These findings inform the design of MRI experiments to detect neuronal currents

    Neural processes of proactive and reactive controls modulated by motor-skill experiences

    Get PDF
    This study investigated the experience of open and closed motor skills on modulating proactive and reactive control processes in task switching. Fifty-four participants who were open-skilled

    Silk fibroin microneedle patches for the treatment of insomnia

    Get PDF
    As a patient-friendly technology, drug-loaded microneedles can deliver drugs through the skin into the body. This system has broad application prospects and is receiving wide attention. Based on the knowledge acquired in this work, we successfully developed a melatonin-loaded microneedle prepared from proline/melatonin/silk fibroin. The engineered microneedles’ morphological, physical, and chemical properties were characterized to investigate their structural transformation mechanism and transdermal drug-delivery capabilities. The results indicated that the crystal structure of silk fibroin in drug-loaded microneedles was mainly Silk I crystal structure, with a low dissolution rate and suitable swelling property. Melatonin-loaded microneedles showed high mechanical properties, and the breaking strength of a single needle was 1.2 N, which could easily be penetrated the skin. The drug release results in vitro revealed that the effective drug concentration was obtained quickly during the early delivery. The successful drug concentration was maintained through continuous release at the later stage. For in vivo experimentation, the Sprague Dawley (SD) rat model of insomnia was constructed. The outcome exhibited that the melatonin-loaded microneedle released the drug into the body through the skin and maintained a high blood concentration (over 5 ng/mL) for 4–6 h. The maximum blood concentration was above 10 ng/mL, and the peak time was 0.31 h. This system indicates that it achieved the purpose of mimicking physiological release and treating insomnia.This work was supported by National Natural Science Foundation of China (Grant No. 51973144), College Nature Science Research Project of Jiangsu Province, China (Grant No. 20KJA540002), PAPD, and Six Talent Peaks Project in Jiangsu Province (Grant No. SWYY-038).SCK is supported by the European Union Framework Programme for Research and Innovation HORIZON 2020 (Grant agreement no. 668983—FoReCaST) and the FCT-Portugal project BREAST-IT (PTDC/BTM-ORG/28168/2017)

    Evolution of the Galaxy - Dark Matter Connection and the Assembly of Galaxies in Dark Matter Halos

    Full text link
    We present a new model to describe the galaxy-dark matter connection across cosmic time, which unlike the popular subhalo abundance matching technique is self-consistent in that it takes account of the facts that (i) subhalos are accreted at different times, and (ii) the properties of satellite galaxies may evolve after accretion. Using observations of galaxy stellar mass functions out to z4z \sim 4, the conditional stellar mass function at z0.1z\sim 0.1 obtained from SDSS galaxy group catalogues, and the two-point correlation function (2PCF) of galaxies at z0.1z \sim 0.1 as function of stellar mass, we constrain the relation between galaxies and dark matter halos over the entire cosmic history from z4z \sim 4 to the present. This relation is then used to predict the median assembly histories of different stellar mass components within dark matter halos (central galaxies, satellite galaxies, and halo stars). We also make predictions for the 2PCFs of high-zz galaxies as function of stellar mass. Our main findings are the following: (i) Our model reasonably fits all data within the observational uncertainties, indicating that the Λ\LambdaCDM concordance cosmology is consistent with a wide variety of data regarding the galaxy population across cosmic time. (ii) ... [abridged]Comment: 37pages, 20 figures, major revision, data updated to SDSS DR7, main conclusions remain unchange

    Usage of FTA (R) Classic Cards for Safe Storage, Shipment, and Detection of Arboviruses

    Get PDF
    Infections caused by arthropod-borne RNA viruses are overrepresented among emerging infectious diseases. Effective methods for collecting, storing, and transporting clinical or biological specimens are needed worldwide for disease surveillance. However, many tropical regions where these diseases are endemic lack analytical facilities and possibility of continuous cold chains, which presents challenges from both a biosafety and material preservation perspective. Whatman (R) FTA (R) Classic Cards may serve as an effective and safe option for transporting hazardous samples at room temperature, particularly for RNA viruses classified as biosafety level (BSL) 2 and 3 pathogens, from sampling sites to laboratories. In this study, we investigated the biosafety and perseverance of representative alpha-and flaviviruses stored on FTA (R) cards. To evaluate the virus inactivation capacity of FTA (R) cards, we used Sindbis virus (SINV), chikungunya virus (CHIKV), and Japanese encephalitis virus (JEV). We inoculated susceptible cells with dilution series of eluates from viral samples stored on the FTA (R) cards and observed for cytopathic effect to evaluate the ability of the cards to inactivate viruses. All tested viruses were inactivated after storage on FTA (R) cards. In addition, we quantified viral RNA of JEV, SINV, and tick-borne encephalitis virus (TBEV) stored on FTA (R) cards at 4 degrees C, 25 degrees C, and 37 degrees C for 30 days using two reverse transcriptase quantitative PCR assays. Viral RNA of SINV stored on FTA (R) cards was not reduced at either 4 degrees C or 25 degrees C over a 30-day period, but degraded rapidly at 37 degrees C. For JEV and TBEV, degradation was observed at all temperatures, with the most rapid degradation occurring at 37 degrees C. Therefore, the use of FTA (R) cards provides a safe and effective workflow for the collection, storage, and analysis of BSL 2- and 3-virus RNA samples, but there is a risk of false negative results if the cards are stored at higher temperatures for long periods of time. Conscious usage of the cards can be useful in disease surveillance and research, especially in tropical areas where transportation and cold chains are problematic

    LAMOST Observations in 15 \textit{K}2 Campaigns: I. Low resolution spectra from LAMOST DR6

    Get PDF
    The LAMOST-\textit{K}2 (L\textit{K}2) project, initiated in 2015, aims to collect low-resolution spectra of targets in the \textit{K}2 campaigns, similar to LAMOST-\textit{Kepler} project. By the end of 2018, a total of 126 L\textit{K}2 plates had been observed by LAMOST. After cross-matching the catalog of the LAMOST data release 6 (DR6) with that of the \textit{K}2 approved targets, we found 160,619 usable spectra of 84,012 objects, most of which had been observed more than once. The effective temperature, surface gravity, metallicity, and radial velocity from 129,974 spectra for 70,895 objects are derived through the LAMOST Stellar Parameter Pipeline (LASP). The internal uncertainties were estimated to be 81 K, 0.15 dex, 0.09 dex and 5 kms1^{-1}, respectively, when derived from a spectrum with a signal-to-noise ratio in the gg band (SNRg_g) of 10. These estimates are based on results for targets with multiple visits. The external accuracies were assessed by comparing the parameters of targets in common with the APOGEE and GAIA surveys, for which we generally found linear relationships. A final calibration is provided, combining external and internal uncertainties for giants and dwarfs, separately. We foresee that these spectroscopic data will be used widely in different research fields, especially in combination with \textit{K}2 photometry.Comment: 31 pages, 9 figures, 6 tables, accepted by ApJ

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    Evolutionary History of Chemosensory-Related Gene Families across the Arthropoda

    Get PDF
    Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hypotheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa. We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an association with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG family evolution across the largest and most speciose metazoan phylum Arthropoda
    corecore