75 research outputs found

    Quantifying the sensitivity of post-glacial sea level change to laterally varying viscosity

    Get PDF
    We present a method for calculating the derivatives of measurements of glacial isostatic adjustment (GIA) with respect to the viscosity structure of the Earth and the ice sheet history. These derivatives, or kernels, quantify the linearised sensitivity of measurements to the underlying model parameters. The adjoint method is used to enable efficient calculation of theoretically exact sensitivity kernels within laterally heterogeneous earth models that can have a range of linear or non-linear viscoelastic rheologies. We first present a new approach to calculate GIA in the time domain, which, in contrast to the more usual formulation in the Laplace domain, is well suited to continuously varying earth models and to the use of the adjoint method. Benchmarking results show excellent agreement between our formulation and previous methods. We illustrate the potential applications of the kernels calculated in this way through a range of numerical calculations relative to a spherically symmetric background model. The complex spatial patterns of the sensitivities are not intuitive, and this is the first time that such effects are quantified in an efficient and accurate manner

    Phase II Trial of Lapatinib for Brain Metastases in Patients With Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer

    Get PDF
    Purpose: One third of women with advanced human epidermal growth factor receptor 2 (HER-2)–positive breast cancer develop brain metastases; a subset progress in the CNS despite standard approaches. Medical therapies for refractory brain metastases are neither well-studied nor established. We evaluated the safety and efficacy of lapatinib, an oral inhibitor of epidermal growth factor receptor (EGFR) and HER-2, in patients with HER-2–positive brain metastases. Patients and Methods: Patients had HER-2–positive breast cancer, progressive brain metastases, prior trastuzumab treatment, and at least one measurable metastatic brain lesion. Patients received lapatinib 750 mg orally twice a day. Tumor response was assessed by magnetic resonance imaging every 8 weeks. The primary end point was objective response (complete response [CR] plus partial response [PR]) in the CNS by Response Evaluation Criteria in Solid Tumors (RECIST). Secondary end points included objective response in non-CNS sites, time to progression, overall survival, and toxicity. Results: Thirty-nine patients were enrolled. All patients had developed brain metastases while receiving trastuzumab; 37 had progressed after prior radiation. One patient achieved a PR in the brain by RECIST (objective response rate 2.6%, 95% conditional CI, 0.21% to 26%). Seven patients (18%) were progression free in both CNS and non-CNS sites at 16 weeks. Exploratory analyses identified additional patients with some degree of volumetric reduction in brain tumor burden. The most common adverse events (AEs) were diarrhea (grade 3, 21%) and fatigue (grade 3, 15%). Conclusion: The study did not meet the predefined criteria for antitumor activity in highly refractory patients with HER-2–positive brain metastases. Because of the volumetric changes observed in our exploratory analysis, further studies are underway utilizing volumetric changes as a primary end point

    The NANOGrav 12.5 yr Data Set: Search for Gravitational Wave Memory

    Get PDF
    We present the results of a Bayesian search for gravitational wave (GW) memory in the NANOGrav 12.5 yr data set. We find no convincing evidence for any gravitational wave memory signals in this data set. We find a Bayes factor of 2.8 in favor of a model that includes a memory signal and common spatially uncorrelated red noise (CURN) compared to a model including only a CURN. However, further investigation shows that a disproportionate amount of support for the memory signal comes from three dubious pulsars. Using a more flexible red-noise model in these pulsars reduces the Bayes factor to 1.3. Having found no compelling evidence, we go on to place upper limits on the strain amplitude of GW memory events as a function of sky location and event epoch. These upper limits are computed using a signal model that assumes the existence of a common, spatially uncorrelated red noise in addition to a GW memory signal. The median strain upper limit as a function of sky position is approximately 3.3 × 10−14. We also find that there are some differences in the upper limits as a function of sky position centered around PSR J0613−0200. This suggests that this pulsar has some excess noise that can be confounded with GW memory. Finally, the upper limits as a function of burst epoch continue to improve at later epochs. This improvement is attributable to the continued growth of the pulsar timing array

    Unlocking the power of cross-species genomic analyses: identification of evolutionarily conserved breast cancer networks and validation of preclinical models

    Get PDF
    The application of high-throughput genomic technologies has revealed that individual breast tumors display a variety of molecular features that require more personalized approaches to treatment. Several recent studies have demonstrated that a cross-species analytic approach provides a powerful means to filter through genetic complexity by identifying evolutionarily conserved genetic networks that are fundamental to the oncogenic process. Mouse-human tumor comparisons will provide insights into cellular origins of tumor subtypes, define interactive oncogenetic networks, identify potential novel therapeutic targets, and further validate as well as guide the selection of genetically engineered mouse models for preclinical testing

    The NANOGrav 15-year data set: Search for Transverse Polarization Modes in the Gravitational-Wave Background

    Full text link
    Recently we found compelling evidence for a gravitational wave background with Hellings and Downs (HD) correlations in our 15-year data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes which produce different interpulsar correlations. In this work we search the NANOGrav 15-year data set for evidence of a gravitational wave background with quadrupolar Hellings and Downs (HD) and Scalar Transverse (ST) correlations. We find that HD correlations are the best fit to the data, and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∼2\sim 2 when comparing HD to ST correlations, and ∼1\sim 1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise-ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise-ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise-ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis.Comment: 11 pages, 5 figure

    The NANOGrav 15 yr Data Set: Search for Transverse Polarization Modes in the Gravitational-wave Background

    Get PDF
    Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD) correlations in our 15 yr data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes, which produce different interpulsar correlations. In this work, we search the NANOGrav 15 yr data set for evidence of a gravitational-wave background with quadrupolar HD and scalar-transverse (ST) correlations. We find that HD correlations are the best fit to the data and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∼2 when comparing HD to ST correlations, and ∼1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis

    The NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background

    Get PDF
    We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings-Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background with a power-law-spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of 101410^{14}, and this same model is favored over an uncorrelated common power-law-spectrum model with Bayes factors of 200-1000, depending on spectral modeling choices. We have built a statistical background distribution for these latter Bayes factors using a method that removes inter-pulsar correlations from our data set, finding p=10−3p = 10^{-3} (approx. 3σ3\sigma) for the observed Bayes factors in the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields p=5×10−5−1.9×10−4p = 5 \times 10^{-5} - 1.9 \times 10^{-4} (approx. 3.5−4σ3.5 - 4\sigma). Assuming a fiducial f−2/3f^{-2/3} characteristic-strain spectrum, as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is 2.4−0.6+0.7×10−152.4^{+0.7}_{-0.6} \times 10^{-15} (median + 90% credible interval) at a reference frequency of 1/(1 yr). The inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black-hole binaries, although more exotic cosmological and astrophysical sources cannot be excluded. The observation of Hellings-Downs correlations points to the gravitational-wave origin of this signal.Comment: 30 pages, 18 figures. Published in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Administrative Law as the New Federalism

    Full text link

    Cell-based tissue engineering strategies used in the clinical repair of articular cartilage

    Full text link
    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of review articles on the paradigm of biomaterials, signals, and cells, it is reported that 90% of new drugs that advance past animal studies fail clinical trials (1). The intent of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by fully understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products
    • …
    corecore