3,607 research outputs found

    MARKET-MAKING BEHAVIOR IN FUTURES MARKETS

    Get PDF
    This paper examines voluntary market-making behavior, namely scalping, in futures markets. Specifically, this paper studies what factors determine scalpers' entry and exit, and how scalping affects market liquidity and price volatility. The data used for the analysis are time-stamped electronic transaction data marked with traders' identities from the Dalian Futures Exchanges in China. The contributions of this paper are: (1) to give detailed analysis of scalping behavior and its impact on market liquidity; (2) to develop new econometric tools for analyzing time-series count data; (3) to propose a new measure of liquidity.Liquidity, Market-Making, Futures Markets, Scalpers, Autoregressive Conditional Intensity (ACI), Volatility, Marketing,

    First electron beam polarization measurements with a Compton polarimeter at Jefferson Laboratory

    Get PDF
    A Compton polarimeter has been installed in Hall A at Jefferson Laboratory. This letter reports on the first electron beam polarization measurements performed during the HAPPEX experiment at an electron energy of 3.3 GeV and an average current of 40 μ\muA. The heart of this device is a Fabry-Perot cavity which increased the luminosity for Compton scattering in the interaction region so much that a 1.4% statistical accuracy could be obtained within one hour, with a 3.3% total error

    Impact du Petit Age Glaciaire sur les plaines alluviales méditerranéenne françaises : apport de la géoarchéologie à l'évolution du bassin du Roussillon

    Get PDF
    International audienceDans la zone méditerranéenne, le Petit Age Glaciaire est enregistrée par le système fluvial sous le nom bien connu de "Younger Infill". Selon des résultats récents obtenus dans le bassin du Roussillon, nous proposons une première esquisse pour le moment, a savoir les causes et les conséquences de cet épisode climatique, basé à la fois sur des données géoarchéologiques et d'archives

    Response of microchannel plates to single particles and to electromagnetic showers

    Get PDF
    We report on the response of microchannel plates (MCPs) to single relativistic particles and to electromagnetic showers. Particle detection by means of secondary emission of electrons at the MCP surface has long been proposed and is used extensively in ion time-of-flight mass spectrometers. What has not been investigated in depth is their use to detect the ionizing component of showers. The time resolution of MCPs exceeds anything that has been previously used in calorimeters and, if exploited effectively, could aid in the event reconstruction at high luminosity colliders. Several prototypes of photodetectors with the amplification stage based on MCPs were exposed to cosmic rays and to 491 MeV electrons at the INFN-LNF Beam-Test Facility. The time resolution and the efficiency of the MCPs are measured as a function of the particle multiplicity, and the results used to model the response to high-energy showers.Comment: Paper submitted to NIM

    The rotation and coma profiles of comet C/2004 Q2 (Machholz)

    Full text link
    Aims. Rotation periods of cometary nuclei are scarce, though important when studying the nature and origin of these objects. Our aim is to derive a rotation period for the nucleus of comet C/2004 Q2 (Machholz). Methods. C/2004 Q2 (Machholz) was monitored using the Merope CCD camera on the Mercator telescope at La Palma, Spain, in January 2005, during its closest approach to Earth, implying a high spatial resolution (50km per pixel). One hundred seventy images were recorded in three different photometric broadband filters, two blue ones (Geneva U and B) and one red (Cousins I). Magnitudes for the comet's optocentre were derived with very small apertures to isolate the contribution of the nucleus to the bright coma, including correction for the seeing. Our CCD photometry also permitted us to study the coma profile of the inner coma in the different bands. Results. A rotation period for the nucleus of P = 9.1 +/- 0.2 h was derived. The period is on the short side compared to published periods of other comets, but still shorter periods are known. Nevertheless, comparing our results with images obtained in the narrowband CN filter, the possibility that our method sampled P/2 instead of P cannot be excluded. Coma profiles are also presented, and a terminal ejection velocity of the grains v_gr = 1609 +/- 48 m/s is found from the continuum profile in the I band.Comment: 11 pages, 9 figures, accepted by A&

    Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests

    Full text link
    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.Comment: 6 pages, 6 figures, Submitted to NIM

    Gas and dust productions of Comet 103P/Hartley 2 from millimetre observations: Interpreting rotation-induced time variations

    Get PDF
    Comet 103P/Hartley 2 made a close approach to the Earth in October 2010. It was the target of an extensive observing campaign including ground- and orbit-based observatories and was visited by the Deep Impact spacecraft in the framework of its mission extension EPOXI. We present observations of HCN and CH_3OH emission lines conducted with the IRAM Plateau de Bure interferometer on 22–23, 28 October and 4, 5 November 2010 at 1.1, 1.9 and 3.4 mm wavelengths. The thermal emission from the dust coma and nucleus is detected simultaneously. Interferometric images with unprecedented spatial resolution of ∼100 to ∼500 km are obtained. A sine–wave like variation of the thermal continuum is observed in the 23 October data, that we associate with the nucleus thermal light curve. The nucleus contributes up to 30–55% of the observed continuum emission. The dust thermal emission is used to measure the dust production rate. The inferred large dust-to-gas ratio (in the range 2–6) can be explained by the unusual activity of the comet for its size, which allows decimeter size particles and large boulders to be entrained by the gas due to the small nucleus gravity. The rotational temperature of CH_3OH is measured with beam radii from ∼150 km to ∼1500 km. We attribute the increase from ∼35 K to ∼46 K with increasing beam size to radiative processes. The HCN production rate displays strong rotation-induced temporal variations, varying from ∼0.3 × 10^(25) s^(−1) to ∼2.0 × 10^(25) s^(−1) in the 4–5 November period. The HCN production curve, as well as the CO_2 and H_2O production curves measured by EPOXI, are interpreted with a geometric model which takes into account the complex rotational state of 103P/Hartley 2 and its shape. The HCN and H_2O production curves are in phase, showing that these molecules have common sources. The ∼1.7 h delay, in average, of the HCN and H_2O production curves with respect to the CO_2 production curve suggests that HCN and H_2O are mainly produced by subliming icy grains. The scale length of production of HCN is determined to be on the order of 500–1000 km, implying a mean velocity of 100–200 m s^(−1) for the icy grains producing HCN. From the time evolution of the insolation of the nucleus, we show that the CO_2 production is modulated by the insolation of the small lobe of the nucleus. The three-cycle pattern of the production curves reported earlier is best explained by an overactivity of the small lobe in the longitude range 0–180°. The good correlation between the insolation of the small lobe and CO_2 production is consistent with CO_2 being produced from small depths below the surface. The time evolution of the velocity offset of the HCN lines, as well as the displacement of the HCN photocenter in the interferometric maps, are overall consistent with this interpretation. Other localized sources of gas on the nucleus surface are also suggested

    Angular Correlations in Internal Pair Conversion of Aligned Heavy Nuclei

    Get PDF
    We calculate the spatial correlation of electrons and positrons emitted by internal pair conversion of Coulomb excited nuclei in heavy ion collisions. The alignment or polarization of the nucleus results in an anisotropic emission of the electron-positron pairs which is closely related to the anisotropic emission of γ\gamma-rays. However, the angular correlation in the case of internal pair conversion exhibits diverse patterns. This might be relevant when investigating atomic processes in heavy-ion collisions performed at the Coulomb barrier.Comment: 27 pages + 6 eps figures, uses revtex.sty and epsf.sty, tar-compressed and uuencoded with uufile

    Imaging Asteroid 4 Vesta Using the Framing Camera

    Get PDF
    The Framing Camera (FC) onboard the Dawn spacecraft serves a dual purpose. Next to its central role as a prime science instrument it is also used for the complex navigation of the ion drive spacecraft. The CCD detector with 1024 by 1024 pixels provides the stability for a multiyear mission and its high requirements of photometric accuracy over the wavelength band from 400 to 1000 nm covered by 7 band-pass filters. Vesta will be observed from 3 orbit stages with image scales of 227, 63, and 17 m/px, respectively. The mapping of Vesta s surface with medium resolution will be only completed during the exit phase when the north pole will be illuminated. A detailed pointing strategy will cover the surface at least twice at similar phase angles to provide stereo views for reconstruction of the topography. During approach the phase function of Vesta was determined over a range of angles not accessible from earth. This is the first step in deriving the photometric function of the surface. Combining the topography based on stereo tie points with the photometry in an iterative procedure will disclose details of the surface morphology at considerably smaller scales than the pixel scale. The 7 color filters are well positioned to provide information on the spectral slope in the visible, the depth of the strong pyroxene absorption band, and their variability over the surface. Cross calibration with the VIR spectrometer that extends into the near IR will provide detailed maps of Vesta s surface mineralogy and physical properties. Georeferencing all these observation will result in a coherent and unique data set. During Dawn s approach and capture FC has already demonstrated its performance. The strong variation observed by the Hubble Space Telescope can now be correlated with surface units and features. We will report on results obtained from images taken during survey mode covering the whole illuminated surface. Vesta is a planet-like differentiated body, but its surface gravity and escape velocity are comparable to those of other asteroids and hence much smaller than those of the inner planets o
    corecore