227 research outputs found
An archetype-based solution for the interoperability of computerised guidelines and electronic health records
Clinical guidelines contain recommendations based on the best empirical evidence available at the moment. There is a wide con- sensus about the benefits of guidelines and about the fact that they should be deployed through clinical information systems, making them available during consultation time. However, one of the main obstacles to this integration is still the interaction with the electronic health record. In this paper we present an archetype-based approach to solve the inter- operability problems of guideline systems, as well as to enable guideline sharing. We also describe the knowledge requirements for the develop- ment of archetype-enabled guideline systems, and then focus on the de- velopment of appropriate guideline archetypes and on the connection of these archetypes to the target electronic health record
PatientExploreR: an extensible application for dynamic visualization of patient clinical history from electronic health records in the OMOP common data model.
MotivationElectronic health records (EHRs) are quickly becoming omnipresent in healthcare, but interoperability issues and technical demands limit their use for biomedical and clinical research. Interactive and flexible software that interfaces directly with EHR data structured around a common data model (CDM) could accelerate more EHR-based research by making the data more accessible to researchers who lack computational expertise and/or domain knowledge.ResultsWe present PatientExploreR, an extensible application built on the R/Shiny framework that interfaces with a relational database of EHR data in the Observational Medical Outcomes Partnership CDM format. PatientExploreR produces patient-level interactive and dynamic reports and facilitates visualization of clinical data without any programming required. It allows researchers to easily construct and export patient cohorts from the EHR for analysis with other software. This application could enable easier exploration of patient-level data for physicians and researchers. PatientExploreR can incorporate EHR data from any institution that employs the CDM for users with approved access. The software code is free and open source under the MIT license, enabling institutions to install and users to expand and modify the application for their own purposes.Availability and implementationPatientExploreR can be freely obtained from GitHub: https://github.com/BenGlicksberg/PatientExploreR. We provide instructions for how researchers with approved access to their institutional EHR can use this package. We also release an open sandbox server of synthesized patient data for users without EHR access to explore: http://patientexplorer.ucsf.edu.Supplementary informationSupplementary data are available at Bioinformatics online
Discerning Tumor Status from Unstructured MRI Reports—Completeness of Information in Existing Reports and Utility of Automated Natural Language Processing
Information in electronic medical records is often in an unstructured free-text format. This format presents challenges for expedient data retrieval and may fail to convey important findings. Natural language processing (NLP) is an emerging technique for rapid and efficient clinical data retrieval. While proven in disease detection, the utility of NLP in discerning disease progression from free-text reports is untested. We aimed to (1) assess whether unstructured radiology reports contained sufficient information for tumor status classification; (2) develop an NLP-based data extraction tool to determine tumor status from unstructured reports; and (3) compare NLP and human tumor status classification outcomes. Consecutive follow-up brain tumor magnetic resonance imaging reports (2000–2007) from a tertiary center were manually annotated using consensus guidelines on tumor status. Reports were randomized to NLP training (70%) or testing (30%) groups. The NLP tool utilized a support vector machines model with statistical and rule-based outcomes. Most reports had sufficient information for tumor status classification, although 0.8% did not describe status despite reference to prior examinations. Tumor size was unreported in 68.7% of documents, while 50.3% lacked data on change magnitude when there was detectable progression or regression. Using retrospective human classification as the gold standard, NLP achieved 80.6% sensitivity and 91.6% specificity for tumor status determination (mean positive predictive value, 82.4%; negative predictive value, 92.0%). In conclusion, most reports contained sufficient information for tumor status determination, though variable features were used to describe status. NLP demonstrated good accuracy for tumor status classification and may have novel application for automated disease status classification from electronic databases
Recommended from our members
Are there valid proxy measures of clinical behaviour?
Background: Accurate measures of health professionals' clinical practice are critically important to guide health policy decisions, as well as for professional self-evaluation and for research-based investigation of clinical practice and process of care. It is often not feasible or ethical to measure behaviour through direct observation, and rigorous behavioural measures are difficult and costly to use. The aim of this review was to identify the current evidence relating to the relationships between proxy measures and direct measures of clinical behaviour. In particular, the accuracy of medical record review, clinician self-reported and patient-reported behaviour was assessed relative to directly observed behaviour.
Methods: We searched: PsycINFO; MEDLINE; EMBASE; CINAHL; Cochrane Central Register of Controlled Trials; science/social science citation index; Current contents (social & behavioural med/clinical med); ISI conference proceedings; and Index to Theses. Inclusion criteria: empirical, quantitative studies; and examining clinical behaviours. An independent, direct measure of behaviour (by standardised patient, other trained observer or by video/audio recording) was considered the 'gold standard' for comparison. Proxy measures of behaviour included: retrospective self-report; patient-report; or chart-review. All titles, abstracts, and full text articles retrieved by electronic searching were screened for inclusion and abstracted independently by two reviewers. Disagreements were resolved by discussion with a third reviewer where necessary.
Results: Fifteen reports originating from 11 studies met the inclusion criteria. The method of direct measurement was by standardised patient in six reports, trained observer in three reports, and audio/video recording in six reports. Multiple proxy measures of behaviour were compared in five of 15 reports. Only four of 15 reports used appropriate statistical methods to compare measures. Some direct measures failed to meet our validity criteria. The accuracy of patient report and chart review as proxy measures varied considerably across a wide range of clinical actions. The evidence for clinician self-report was inconclusive.
Conclusion: Valid measures of clinical behaviour are of fundamental importance to accurately identify gaps in care delivery, improve quality of care, and ultimately to improve patient care. However, the evidence base for three commonly used proxy measures of clinicians' behaviour is very limited. Further research is needed to better establish the methods of development, application, and analysis for a range of both direct and proxy measures of behaviour
Combining classifiers for robust PICO element detection
<p>Abstract</p> <p>Background</p> <p>Formulating a clinical information need in terms of the four atomic parts which are Population/Problem, Intervention, Comparison and Outcome (known as PICO elements) facilitates searching for a precise answer within a large medical citation database. However, using PICO defined items in the information retrieval process requires a search engine to be able to detect and index PICO elements in the collection in order for the system to retrieve relevant documents.</p> <p>Methods</p> <p>In this study, we tested multiple supervised classification algorithms and their combinations for detecting PICO elements within medical abstracts. Using the structural descriptors that are embedded in some medical abstracts, we have automatically gathered large training/testing data sets for each PICO element.</p> <p>Results</p> <p>Combining multiple classifiers using a weighted linear combination of their prediction scores achieves promising results with an <it>f</it>-measure score of 86.3% for P, 67% for I and 56.6% for O.</p> <p>Conclusions</p> <p>Our experiments on the identification of PICO elements showed that the task is very challenging. Nevertheless, the performance achieved by our identification method is competitive with previously published results and shows that this task can be achieved with a high accuracy for the P element but lower ones for I and O elements.</p
Clinical narrative analytics challenges
Precision medicine or evidence based medicine is based on
the extraction of knowledge from medical records to provide individuals
with the appropriate treatment in the appropriate moment according to
the patient features. Despite the efforts of using clinical narratives for
clinical decision support, many challenges have to be faced still today
such as multilinguarity, diversity of terms and formats in different services,
acronyms, negation, to name but a few. The same problems exist
when one wants to analyze narratives in literature whose analysis would
provide physicians and researchers with highlights. In this talk we will
analyze challenges, solutions and open problems and will analyze several
frameworks and tools that are able to perform NLP over free text to
extract medical entities by means of Named Entity Recognition process.
We will also analyze a framework we have developed to extract and validate
medical terms. In particular we present two uses cases: (i) medical
entities extraction of a set of infectious diseases description texts provided
by MedlinePlus and (ii) scales of stroke identification in clinical
narratives written in Spanish
Population Physiology: Leveraging Electronic Health Record Data to Understand Human Endocrine Dynamics
Studying physiology and pathophysiology over a broad population for long periods of time is difficult primarily because collecting human physiologic data can be intrusive, dangerous, and expensive. One solution is to use data that have been collected for a different purpose. Electronic health record (EHR) data promise to support the development and testing of mechanistic physiologic models on diverse populations and allow correlation with clinical outcomes, but limitations in the data have thus far thwarted such use. For example, using uncontrolled population-scale EHR data to verify the outcome of time dependent behavior of mechanistic, constructive models can be difficult because: (i) aggregation of the population can obscure or generate a signal, (ii) there is often no control population with a well understood health state, and (iii) diversity in how the population is measured can make the data difficult to fit into conventional analysis techniques. This paper shows that it is possible to use EHR data to test a physiological model for a population and over long time scales. Specifically, a methodology is developed and demonstrated for testing a mechanistic, time-dependent, physiological model of serum glucose dynamics with uncontrolled, population-scale, physiological patient data extracted from an EHR repository. It is shown that there is no observable daily variation the normalized mean glucose for any EHR subpopulations. In contrast, a derived value, daily variation in nonlinear correlation quantified by the time-delayed mutual information (TDMI), did reveal the intuitively expected diurnal variation in glucose levels amongst a random population of humans. Moreover, in a population of continuously (tube) fed patients, there was no observable TDMI-based diurnal signal. These TDMI-based signals, via a glucose insulin model, were then connected with human feeding patterns. In particular, a constructive physiological model was shown to correctly predict the difference between the general uncontrolled population and a subpopulation whose feeding was controlled
A draft framework for measuring progress towards the development of a national health information infrastructure
BACKGROUND: American public policy makers recently established the goal of providing the majority of Americans with electronic health records by 2014. This will require a National Health Information Infrastructure (NHII) that is far more complete than the one that is currently in its formative stage of development. We describe a conceptual framework to help measure progress toward that goal. DISCUSSION: The NHII comprises a set of clusters, such as Regional Health Information Organizations (RHIOs), which, in turn, are composed of smaller clusters and nodes such as private physician practices, individual hospitals, and large academic medical centers. We assess progress in terms of the availability and use of information and communications technology and the resulting effectiveness of these implementations. These three attributes can be studied in a phased approach because the system must be available before it can be used, and it must be used to have an effect. As the NHII expands, it can become a tool for evaluating itself. SUMMARY: The NHII has the potential to transform health care in America – improving health care quality, reducing health care costs, preventing medical errors, improving administrative efficiencies, reducing paperwork, and increasing access to affordable health care. While the President has set an ambitious goal of assuring that most Americans have electronic health records within the next 10 years, a significant question remains "How will we know if we are making progress toward that goal?" Using the definitions for "nodes" and "clusters" developed in this article along with the resulting measurement framework, we believe that we can begin a discussion that will enable us to define and then begin making the kinds of measurements necessary to answer this important question
Constructing a semantic predication gold standard from the biomedical literature
<p>Abstract</p> <p>Background</p> <p>Semantic relations increasingly underpin biomedical text mining and knowledge discovery applications. The success of such practical applications crucially depends on the quality of extracted relations, which can be assessed against a gold standard reference. Most such references in biomedical text mining focus on narrow subdomains and adopt different semantic representations, rendering them difficult to use for benchmarking independently developed relation extraction systems. In this article, we present a multi-phase gold standard annotation study, in which we annotated 500 sentences randomly selected from MEDLINE abstracts on a wide range of biomedical topics with 1371 semantic predications. The UMLS Metathesaurus served as the main source for conceptual information and the UMLS Semantic Network for relational information. We measured interannotator agreement and analyzed the annotations closely to identify some of the challenges in annotating biomedical text with relations based on an ontology or a terminology.</p> <p>Results</p> <p>We obtain fair to moderate interannotator agreement in the practice phase (0.378-0.475). With improved guidelines and additional semantic equivalence criteria, the agreement increases by 12% (0.415 to 0.536) in the main annotation phase. In addition, we find that agreement increases to 0.688 when the agreement calculation is limited to those predications that are based only on the explicitly provided UMLS concepts and relations.</p> <p>Conclusions</p> <p>While interannotator agreement in the practice phase confirms that conceptual annotation is a challenging task, the increasing agreement in the main annotation phase points out that an acceptable level of agreement can be achieved in multiple iterations, by setting stricter guidelines and establishing semantic equivalence criteria. Mapping text to ontological concepts emerges as the main challenge in conceptual annotation. Annotating predications involving biomolecular entities and processes is particularly challenging. While the resulting gold standard is mainly intended to serve as a test collection for our semantic interpreter, we believe that the lessons learned are applicable generally.</p
Automation of a problem list using natural language processing
BACKGROUND: The medical problem list is an important part of the electronic medical record in development in our institution. To serve the functions it is designed for, the problem list has to be as accurate and timely as possible. However, the current problem list is usually incomplete and inaccurate, and is often totally unused. To alleviate this issue, we are building an environment where the problem list can be easily and effectively maintained. METHODS: For this project, 80 medical problems were selected for their frequency of use in our future clinical field of evaluation (cardiovascular). We have developed an Automated Problem List system composed of two main components: a background and a foreground application. The background application uses Natural Language Processing (NLP) to harvest potential problem list entries from the list of 80 targeted problems detected in the multiple free-text electronic documents available in our electronic medical record. These proposed medical problems drive the foreground application designed for management of the problem list. Within this application, the extracted problems are proposed to the physicians for addition to the official problem list. RESULTS: The set of 80 targeted medical problems selected for this project covered about 5% of all possible diagnoses coded in ICD-9-CM in our study population (cardiovascular adult inpatients), but about 64% of all instances of these coded diagnoses. The system contains algorithms to detect first document sections, then sentences within these sections, and finally potential problems within the sentences. The initial evaluation of the section and sentence detection algorithms demonstrated a sensitivity and positive predictive value of 100% when detecting sections, and a sensitivity of 89% and a positive predictive value of 94% when detecting sentences. CONCLUSION: The global aim of our project is to automate the process of creating and maintaining a problem list for hospitalized patients and thereby help to guarantee the timeliness, accuracy and completeness of this information
- …