1,055 research outputs found
Easily retrievable objects among the NEO population
Asteroids and comets are of strategic importance for science in an effort to understand the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this paper, we consider the currently known NEO population and define a family of so-called Easily Retrievable Objects (EROs), objects that can be transported from accessible heliocentric orbits into the Earth’s neighbourhood at affordable costs. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun-Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy Earth transfers for asteroid material. A catalogue of asteroid retrieval candidates is then presented. Despite the highly incomplete census of very small asteroids, the ERO catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of Δv. Moreover, the approach proposed represents a robust search and ranking methodology for future retrieval candidates that can be automatically applied to the growing survey of NEOs
Photometry of cometary nuclei: Rotation rates, colours and a comparison with Kuiper Belt Objects
We present time-series data on Jupiter Family Comets (JFCs) 17P/Holmes,
47P/Ashbrook-Jackson and 137P/Shoemaker-Levy 2. In addition we also present
results from `snap-shot' observations of comets 43P/Wolf-Harrington,
44P/Reinmuth 2, 103P/Hartley 2 and 104P/Kowal 2 taken during the same run. The
comets were at heliocentric distances of between 3 and 7 AU at this time. We
present measurements of size and activity levels for the snap-shot targets. The
time-series data allow us to constrain rotation periods and shapes, and thus
bulk densities. We also measure colour indices (V-R) and (R-I) and reliable
radii for these comets. We compare all of our findings to date with similar
results for other comets and Kuiper Belt Objects (KBOs). We find that the
rotational properties of nuclei and KBOs are very similar, that there is
evidence for a cut-off in bulk densities at ~ 0.6 g cm^{-3} in both
populations, and the colours of the two populations show similar correlations.
For JFCs there is no observational evidence for the optical colours being
dependant on either position in the orbit or on orbital parameters.Comment: 15 pages, 19 figures, accepted for publication in MNRA
Characterization of the near-Earth Asteroid 2002NY40
In August 2002, the near-Earth asteroid 2002 NY40, made its closest approach
to the Earth. This provided an opportunity to study a near-Earth asteroid with
a variety of instruments. Several of the telescopes at the Maui Space
Surveillance System were trained at the asteroid and collected adaptive optics
images, photometry and spectroscopy. Analysis of the imagery reveals the
asteroid is triangular shaped with significant self-shadowing. The photometry
reveals a 20-hour period and the spectroscopy shows that the asteroid is a
Q-type
Near-IR search for lensed supernovae behind galaxy clusters: I. Observations and transient detection efficiency
Massive galaxy clusters at intermediate redshift can magnify the flux of
distant background sources by several magnitudes and we exploit this effect to
search for lensed distant supernovae that may otherwise be too faint to be
detected. A supernova search was conducted at near infrared wavelengths using
the ISAAC instrument at the VLT. The galaxy clusters Abell 1689, Abell 1835 and
AC114 were observed at multiple epochs of 2 hours of exposure time, separated
by a month. Image-subtraction techniques were used to search for transient
objects with light curve properties consistent with supernovae, both in our new
and archival ISAAC/VLT data. The limiting magnitude of the individual epochs
was estimated by adding artificial stars to the subtracted images. Most of the
epochs reach 90% detection efficiency at SZ(J) ~= 23.8-24.0 mag (Vega). Two
transient objects, both in archival images of Abell 1689 and AC114, were
detected. The transient in AC114 coincides - within the position uncertainty -
with an X-ray source and is likely to be a variable AGN at the cluster
redshift. The transient in Abell 1689 was found at SZ=23.24 mag, ~0.5 arcsec
away from a galaxy with photometric redshift z=0.6 +/-0.15. The light curves
and the colors of the transient are consistent with a reddened Type IIP
supernova at redshift z=0.59 +/- 0.05. The lensing model of Abell 1689 predicts
~1.4 mag of magnification at the position of the transient, making it the most
magnified supernova ever found and only the second supernova found behind a
galaxy cluster. Our pilot survey has demonstrated the feasibility to find
distant gravitationally magnified supernovae behind massive galaxy clusters.
One likely supernova was found behind Abell 1689, in accordance with the
expectations for this survey, as shown in an accompanying analysis paper.Comment: Language-edited version, 9 pages, 6 figures, accepted by A&
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at
the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam
A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors
located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This
new SBN Program will deliver a rich and compelling physics opportunity,
including the ability to resolve a class of experimental anomalies in neutrino
physics and to perform the most sensitive search to date for sterile neutrinos
at the eV mass-scale through both appearance and disappearance oscillation
channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND
and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we
estimate that a search for muon neutrino to electron neutrino appearance can be
performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter
region. In this proposal for the SBN Program, we describe the physics analysis,
the conceptual design of the LAr1-ND detector, the design and refurbishment of
the T600 detector, the necessary infrastructure required to execute the
program, and a possible reconfiguration of the BNB target and horn system to
improve its performance for oscillation searches.Comment: 209 pages, 129 figure
On peer reviewing: how to nourish an author’s mind and win a JLDHE editor’s heart
No embargo required.Editors and publishers of scholarly journals rarely agree on what makes for a good publication; they do, however, agree on the need for a robust peer review process as a crucial means to judge the merits of potential publications. While fraught with issues and inefficiencies, a critical and supportive peer review is not only what editors rely on when assessing scholarship presented for publication but also what authors hope for in order to improve their work. Understanding how peer review may best serve all parties involved: authors, editors, and reviewers, is thus at the heart of this article. The analysis offered here is based on a session the Journal for Learning Development in Higher Education editors gave at the 2020 LD@3 seminar series, entitled ‘The Art of Reviewing’. It explores the different aspects of the peer review process while formulating recommendations regarding best practices and outlining JLDHE initiatives for supporting reviewers’ vital work.</jats:p
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory
Most Type I superluminous supernovae (SLSNe-I) reported to date have been identified by their high peak luminosities and spectra lacking obvious signs of hydrogen. We demonstrate that these events can be distinguished from normal-luminosity SNe (including Type Ic events) solely from their spectra over a wide range of light-curve phases. We use this distinction to select 19 SLSNe-I and four possible SLSNe-I from the Palomar Transient Factory archive (including seven previously published objects). We present 127 new spectra of these objects and combine these with 39 previously published spectra, and we use these to discuss the average spectral properties of SLSNe-I at different spectral phases. We find that Mn II most probably contributes to the ultraviolet spectral features after maximum light, and we give a detailed study of the O II features that often characterize the early-time optical spectra of SLSNe-I. We discuss the velocity distribution of O II, finding that for some SLSNe-I this can be confined to a narrow range compared to relatively large systematic velocity shifts. Mg II and Fe II favor higher velocities than O II and C II, and we briefly discuss how this may constrain power-source models. We tentatively group objects by how well they match either SN 2011ke or PTF12dam and discuss the possibility that physically distinct events may have been previously grouped together under the SLSN-I label
The Applications of GIS in the Analysis of the Impacts of Human Activities on South Texas Watersheds
With water resource planning assuming greater importance in environmental protection efforts, analyzing the health of agricultural watersheds using Geographic Information Systems (GIS) becomes essential for decision-makers in Southern Texas. Within the area, there exist numerous threats from conflicting land uses. These include the conversion of land formerly designated for agricultural purposes to other uses. Despite current efforts, anthropogenic factors are greatly contributing to the degradation of watersheds. Additionally, the activities of waste water facilities located in some of the counties, rising populations, and other socioeconomic variables are negatively impacting the quality of water in the agricultural watersheds. To map the location of these stressors spatially and the extent of their impacts across time, the paper adopts a mix scale method of temporal spatial analysis consisting of simple descriptive statistics. In terms of objectives, this research provides geo-spatial analysis of the effects of human activities on agricultural watersheds in Southern Texas and the factors fuelling the concerns under the purview of watershed management. The results point to growing ecosystem decline across time and a geographic cluster of counties experiencing environmental stress. Accordingly, the emergence of stressors such as rising population, increased use of fertilizer treatments on farm land, discharges of atmospheric pollutants and the large presence of municipal and industrial waste treatment facilities emitting pathogens and pesticides directly into the agricultural watersheds pose a growing threat to the quality of the watershed ecosystem
- …
