517 research outputs found

    An atlas of emission line fluxes of planetary nebulae in the 1150-3200 A region

    Get PDF
    Emission line fluxes for 28 planetary nebulae are presented. The nebulae were chosen to cover a wide range of excitation classes, apparent diameters, location in the sky, and types of central stars. All objects were observed in the low dispersion mode of the IUE spectrographs, using the large entrance aperture

    The spectrum of HM Sagittae: A planetary nebula excited by a Wolf-Rayet star

    Get PDF
    A total of image tube spectrograms of HM Sagittae were obtained. More than 70 emission lines, including several broad emission features, were identified. An analysis of the spectra indicates that HM Sagittae is a planetary nebula excited by a Wolf-Rayet star. The most conspicuous Wolf-Rayet feature is that attributed to a blend of C III at 4650 A and He II at 4686 A

    Detection of the Central Star of the Planetary Nebula NGC 6302

    Get PDF
    NGC 6302 is one of the highest ionization planetary nebulae known and shows emission from species with ionization potential >300eV. The temperature of the central star must be >200,000K to photoionize the nebula, and has been suggested to be up to ~ 400,000K. On account of the dense dust and molecular disc, the central star has not convincingly been directly imaged until now. NGC 6302 was imaged in six narrow band filters by Wide Field Camera 3 on HST as part of the Servicing Mission 4 Early Release Observations. The central star is directly detected for the first time, and is situated at the nebula centre on the foreground side of the tilted equatorial disc. The magnitudes of the central star have been reliably measured in two filters(F469N and F673N). Assuming a hot black body, the reddening has been measured from the (4688-6766\AA) colour and a value of c=3.1, A_v=6.6 mag determined. A G-K main sequence binary companion can be excluded. The position of the star on the HR diagram suggests a fairly massive PN central star of about 0.64,M_sun close to the white dwarf cooling track. A fit to the evolutionary tracks for (T,L,t)=(200,000K, 2000L_sun, 2200yr), where t is the nebular age, is obtained; however the luminosity and temperature remain uncertain. The model tracks predict that the star is rapidly evolving, and fading at a rate of almost 1 % per year. Future observations could test this prediction.Comment: 13 pages, 5 figures, submitted to ApJ Letters on 25.09.2009 accepted on 19.10.200

    On the O II ground configuration energy levels

    Full text link
    The most accurate way to measure the energy levels for the O II 2p^3 ground configuration has been from the forbidden lines in planetary nebulae. We present an analysis of modern planetary nebula data that nicely constrain the splitting within the ^2D term and the separation of this term from the ground ^4S_{3/2} level. We extend this method to H II regions using high-resolution spectroscopy of the Orion nebula, covering all six visible transitions within the ground configuration. These data confirm the splitting of the ^2D term while additionally constraining the splitting of the ^2P term. The energies of the ^2P and ^2D terms relative to the ground (^4S) term are constrained by requiring that all six lines give the same radial velocity, consistent with independent limits placed on the motion of the O+ gas and the planetary nebula data.Comment: 20 pages, 3 figures. To be published in Ap

    Adlayer core-level shifts of random metal overlayers on transition-metal substrates

    Get PDF
    We calculate the difference of the ionization energies of a core-electron of a surface alloy, i.e., a B-atom in a A_(1-x) B_x overlayer on a fcc-B(001)-substrate, and a core-electron of the clean fcc-B(001) surface using density-functional-theory. We analyze the initial-state contributions and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Data are presented for Cu_(1-x)Pd_x/Pd(001), Ag_(1-x) Pd_x/Pd(001), Pd_(1-x) Cu_x/Cu(001), and Pd_(1-x) Ag_x/Ag(001), changing x from 0 to 100 %. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from the initial-state trends are explained in terms of the change of inter- and intra-atomic screening upon alloying. A possible role of alloying on the chemical reactivity of metal surfaces is discussed.Comment: 4 pages, 2 figures, Phys. Rev. Letters, to appear in Feb. 199

    Spatial coherence of thermal near fields

    Get PDF
    We analyze the spatial coherence of the electromagnetic field emitted by a half-space at temperature T close to the interface. An asymptotic analysis allows to identify three different contributions to the cross-spectral density tensor in the near-field regime. It is shown that the coherence length can be either much larger or much shorter than the wavelength depending on the dominant contribution.Comment: 13 pages, 8 graphs, includes Elsevier elsart.cls preprint style. Submitted to Optics Communications (27 july 2000

    Kinetics and thermodynamics of carbon segregation and graphene growth on Ru(0001)

    Full text link
    We measure the concentration of carbon adatoms on the Ru(0001) surface that are in equilibrium with C atoms in the crystal's bulk by monitoring the electron reflectivity of the surface while imaging. During cooling from high temperature, C atoms segregate to the Ru surface, causing graphene islands to nucleate. Using low-energy electron microscopy (LEEM), we measure the growth rate of individual graphene islands and, simultaneously, the local concentration of C adatoms on the surface. We find that graphene growth is fed by the supersaturated, two-dimensional gas of C adatoms rather than by direct exchange between the bulk C and the graphene. At long times, the rate at which C diffuses from the bulk to the surface controls the graphene growth rate. The competition among C in three states - dissolved in Ru, as an adatom, and in graphene - is quantified and discussed. The adatom segregation enthalpy determined by applying the simple Langmuir-McLean model to the temperature-dependent equilibrium concentration seriously disagrees with the value calculated from first-principles. This discrepancy suggests that the assumption in the model of non-interacting C is not valid

    Surface relaxation and ferromagnetism of Rh(001)

    Full text link
    The significant discrepancy between first-principles calculations and experimental analyses for the relaxation of the (001) surface of rhodium has been a puzzle for some years. In this paper we present density functional theory calculations using the local-density approximation and the generalized gradient approximation of the exchange-correlation functional. We investigate the thermal expansion of the surface and the possibility of surface magnetism. The results throw light on several, hitherto overlooked, aspects of metal surfaces. We find, that, when the free energy is considered, density-functional theory provides results in good agreement with experiments.Comment: 6 pages, 4 figures, submitted to Phys. Rev. Lett. (April 28, 1996

    Damping of differential rotation in neutron stars

    Get PDF
    We derive the transport relaxation times for quasiparticle-vortex scattering processes via nuclear force, relevant for the damping of differential rotation of superfluids in the quantum liquid core of a neutron star. The proton scattering off the neutron vortices provides the dominant resistive force on the vortex lattice at all relevant temperatures in the phase where neutrons only are in the paired state. If protons are superconducting, a small fraction of hyperons and resonances in the normal state would be the dominant source of friction on neutron and proton vortex lattices at the core temperatures T107T\ge 10^{7} K.Comment: 5 pages, Revtex, Phys. Rev. D 58, Rapid Communication, in pres

    Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)

    Full text link
    Using density-functional theory with the local-density approximation and the generalized gradient approximation we compute the energy barriers for surface diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly with increasing lattice constant. We also discuss the reconstruction that has been found experimentally when two Ag layers are deposited on Pt(111). Our calculations explain why this strain driven reconstruction occurs only after two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres
    corecore