11 research outputs found

    Mid-Holocene palaeolimnological record of a Southern Hemisphere subtropical lake spanning the last ~6000 years: Lake Jennings, Fraser Island, Australia

    No full text
    The study of climate mechanisms in the Southern Hemisphere during the Holocene remains an area of active research that lacks the spatial and temporal connectivity characteristic of Northern Hemisphere research. The subtropical/temperate climate transition zone of eastern Australia provides a unique location to investigate long-term environmental changes during the Holocene. Lake Jennings on Fraser Island was used to investigate climate change in this transition zone using palaeolimnological techniques. The beginning of the Lake Jennings record (~6000 to 3500 cal. yBP), is characterised by fluctuations in geochemical signals, an abundance of sponge spicules, and a lack of diatom species. Results suggest gradually increasing precipitation and water depth, which affect nutrient cycling. However, the biological functioning of the lake is difficult to interpret due to the absence of diatoms, possibly a result of turbidity, dissolution and/or predation by freshwater sponges. During the late Holocene, ~3500 cal. yBP to present, precipitation and water depth of the lake decreases to present day levels. Within this section of the core nutrient cycling changes, as indicated by the geochemical results, and a series of more intense wet and dry events took place before stabilising at present day levels. Other palaeoecological studies within the Southern Hemisphere have noted changes in geochemical and biological attributes within similar latitudes, confirming the notion of climate forced environmental change in aquatic ecosystems. This continuous ~6000 year record from Lake Jennings shows distinct changes in aquatic communities, confirming a trend of drying in subtropical eastern Australia through the late Holocene

    Sequence of events from the onset to the demise of the Last Interglacial: Evaluating strengths and limitations of chronologies used in climatic archives

    Get PDF
    The Last Interglacial (LIG) represents an invaluable case study to investigate the response of components of the Earth system to global warming. However, the scarcity of absolute age constraints in most archives leads to extensive use of various stratigraphic alignments to different reference chronologies. This feature sets limitations to the accuracy of the stratigraphic assignment of the climatic sequence of events across the globe during the LIG. Here, we review the strengths and limitations of the methods that are commonly used to date or develop chronologies in various climatic archives for the time span (similar to 140 -100 ka) encompassing the penultimate deglaciation, the LIG and the glacial inception. Climatic hypotheses underlying record alignment strategies and the interpretation of tracers are explicitly described. Quantitative estimates of the associated absolute and relative age uncertainties are provided. Recommendations are subsequently formulated on how best to define absolute and relative chronologies. Future climato-stratigraphic alignments should provide (1) a clear statement of climate hypotheses involved, (2) a detailed understanding of environmental parameters controlling selected tracers and (3) a careful evaluation of the synchronicity of aligned paleoclimatic records. We underscore the need to (1) systematically report quantitative estimates of relative and absolute age uncertainties, (2) assess the coherence of chronologies when comparing different records, and (3) integrate these uncertainties in paleoclimatic interpretations and comparisons with climate simulations. Finally, we provide a sequence of major climatic events with associated age uncertainties for the period 140-105 ka, which should serve as a new benchmark to disentangle mechanisms of the Earth system's response to orbital forcing and evaluate transient climate simulations

    A Catalogue of Irish Pollen Diagrams

    No full text
    corecore