202 research outputs found

    Recognizing differentiating clinical signs of CLN3 disease (Batten disease) at presentation

    Get PDF
    Purpose To help differentiate CLN3 (Batten) disease, a devastating childhood metabolic disorder, from the similarly presenting early-onset Stargardt disease (STGD1). Early clinical identification of children with CLN3 disease is essential for adequate referral, counselling and rehabilitation. Methods Medical chart review of 38 children who were referred to a specialized ophthalmological centre because of rapid vision loss. The patients were subsequently diagnosed with either CLN3 disease (18 patients) or early-onset STGD1 (20 patients). Results Both children who were later diagnosed with CLN3 disease, as children who were later diagnosed with early-onset STGD1, initially presented with visual acuity (VA) loss due to macular dystrophy at 5-10 years of age. VA in CLN3 disease decreased significantly faster than in STGD1 (p = 0.01). Colour vision was often already severely affected in CLN3 disease while unaffected or only mildly affected in STGD1. Optic disc pallor on fundoscopy and an abnormal nerve fibre layer on optical coherence tomography were common in CLN3 disease compared to generally unaffected in STGD1. In CLN3 disease, dark-adapted (DA) full-field electroretinogram (ERG) responses were either absent or electronegative. In early-onset STGD1, DA ERG responses were generally unaffected. None of the STGD1 patients had an electronegative ERG. Conclusion Already upon presentation at the ophthalmologist, the retina in CLN3 disease is more extensively and more severely affected compared to the retina in early-onset STGD1. This results in more rapid VA loss, severe colour vision abnormalities and abnormal DA ERG responses as the main differentiating early clinical features of CLN3 disease

    Multisensory causal inference in the brain

    Get PDF
    At any given moment, our brain processes multiple inputs from its different sensory modalities (vision, hearing, touch, etc.). In deciphering this array of sensory information, the brain has to solve two problems: (1) which of the inputs originate from the same object and should be integrated and (2) for the sensations originating from the same object, how best to integrate them. Recent behavioural studies suggest that the human brain solves these problems using optimal probabilistic inference, known as Bayesian causal inference. However, how and where the underlying computations are carried out in the brain have remained unknown. By combining neuroimaging-based decoding techniques and computational modelling of behavioural data, a new study now sheds light on how multisensory causal inference maps onto specific brain areas. The results suggest that the complexity of neural computations increases along the visual hierarchy and link specific components of the causal inference process with specific visual and parietal regions

    Multisensory Integration and Attention in Autism Spectrum Disorder: Evidence from Event-Related Potentials

    Get PDF
    Successful integration of various simultaneously perceived perceptual signals is crucial for social behavior. Recent findings indicate that this multisensory integration (MSI) can be modulated by attention. Theories of Autism Spectrum Disorders (ASDs) suggest that MSI is affected in this population while it remains unclear to what extent this is related to impairments in attentional capacity. In the present study Event-related potentials (ERPs) following emotionally congruent and incongruent face-voice pairs were measured in 23 high-functioning, adult ASD individuals and 24 age- and IQ-matched controls. MSI was studied while the attention of the participants was manipulated. ERPs were measured at typical auditory and visual processing peaks, namely, P2 and N170. While controls showed MSI during divided attention and easy selective attention tasks, individuals with ASD showed MSI during easy selective attention tasks only. It was concluded that individuals with ASD are able to process multisensory emotional stimuli, but this is differently modulated by attention mechanisms in these participants, especially those associated with divided attention. This atypical interaction between attention and MSI is also relevant to treatment strategies, with training of multisensory attentional control possibly being more beneficial than conventional sensory integration therapy

    Watershed Management on Range and Forest Lands Proceedings of the Fifth Workshop of the United States/Australia Rangelands Panel

    Get PDF
    Preface: The U.S.-Australia Cooperative Rangeland Science Program In October 1968 the governments of the United States and Australia entered into an agreement for the purpose of facilitating close cooperative activities between the scientific communities of the two countries. The joint communique issued at that time designated the U.S. National Science Foundation and the Australian Commonwealth Department of Education and Science as the coordinating agencies. Both countries were to encourage binational teamwork in research, interchanges of scientists, joint seminars, and exchanges of information. A United States-Australia Rangeland Panel was established in December 1969 to further cooperation between the two countries in the rangeland sciences. The present panel includes the following

    Interaction of perceptual grouping and crossmodal temporal capture in tactile apparent-motion

    Get PDF
    Previous studies have shown that in tasks requiring participants to report the direction of apparent motion, task-irrelevant mono-beeps can "capture'' visual motion perception when the beeps occur temporally close to the visual stimuli. However, the contributions of the relative timing of multimodal events and the event structure, modulating uni- and/or crossmodal perceptual grouping, remain unclear. To examine this question and extend the investigation to the tactile modality, the current experiments presented tactile two-tap apparent-motion streams, with an SOA of 400 ms between successive, left-/right-hand middle-finger taps, accompanied by task-irrelevant, non-spatial auditory stimuli. The streams were shown for 90 seconds, and participants' task was to continuously report the perceived (left-or rightward) direction of tactile motion. In Experiment 1, each tactile stimulus was paired with an auditory beep, though odd-numbered taps were paired with an asynchronous beep, with audiotactile SOAs ranging from -75 ms to 75 ms. Perceived direction of tactile motion varied systematically with audiotactile SOA, indicative of a temporal-capture effect. In Experiment 2, two audiotactile SOAs-one short (75 ms), one long (325 ms)-were compared. The long-SOA condition preserved the crossmodal event structure (so the temporal-capture dynamics should have been similar to that in Experiment 1), but both beeps now occurred temporally close to the taps on one side (even-numbered taps). The two SOAs were found to produce opposite modulations of apparent motion, indicative of an influence of crossmodal grouping. In Experiment 3, only odd-numbered, but not even-numbered, taps were paired with auditory beeps. This abolished the temporal-capture effect and, instead, a dominant percept of apparent motion from the audiotactile side to the tactile-only side was observed independently of the SOA variation. These findings suggest that asymmetric crossmodal grouping leads to an attentional modulation of apparent motion, which inhibits crossmodal temporal-capture effects

    Counseling Update: A Flexible Monitoring Method for the Client and Practitioner

    Full text link
    Recent years have seen a number of articles questioning both the utility and practicality of single-case designs. The authors propose a flexible monitoring method for practice evaluation. The proposed method is presented as a dynamic model, one that utilizes the existing evaluative procedures of the practitioner. This flexible method is proposed within the general outlines of developmental research. It is proposed as a method designed to lead practitioners toward an empirical model of practice. Some case examples are provided to substantiate the utility and value of the model.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68429/2/10.1177_104973159300300203.pd

    Spatially uninformative sounds increase sensitivity for visual motion change

    Get PDF
    It has recently been shown that spatially uninformative sounds can cause a visual stimulus to pop out from an array of similar distractor stimuli when that sound is presented in temporal proximity to a feature change in the visual stimulus. Until now, this effect has predominantly been demonstrated by using stationary stimuli. Here, we extended these results by showing that auditory stimuli can also improve the sensitivity of visual motion change detection. To accomplish this, we presented moving visual stimuli (small dots) on a computer screen. At a random moment during a trial, one of these stimuli could abruptly move in an orthogonal direction. Participants’ task was to indicate whether such an abrupt motion change occurred or not by making a corresponding button press. If a sound (a short 1,000 Hz tone pip) co-occurred with the abrupt motion change, participants were able to detect this motion change more frequently than when the sound was not present. Using measures derived from signal detection theory, we were able to demonstrate that the effect on accuracy was due to increased sensitivity rather than to changes in response bias

    Reverse thinking: taking a healthy diet perspective towards food systems transformations

    Get PDF
    Food systems that deliver healthy diets without exceeding the planet’s resources are essential to achieve the worlds’ ambitious development goals. Healthy diets need to be safe, accessible, and affordable for all, including for disadvantaged and nutritionally vulnerable groups such as of smallholder producers, traders, and consumers in low- and middle-income countries. Globally, food systems are experiencing rapid and drastic changes and are failing to fulfil these multiple duties simultaneously. The international community therefore calls for rigorous food systems transformations and policy solutions to support the achievement of healthy diets for all. Most strategies, however, are essentially supply- and market-oriented. Incorporation of a healthy diet perspective in food system transformation is essential to enable food systems to deliver not only on supplying nutritious foods but also on ensuring that consumers have access can afford and desire healthy, sustainable, and culturally acceptable diets. This paper argues that this should be guided by information on diets, dietary trends, consumer motives, and food environment characteristics. Transformational approaches and policies should also take into account the stage of food system development requiring different strategies to ensure healthier diets for consumers. We review current knowledge on drivers of consumer choices at the individual and food environment level with special emphasis on low- and middle income countries, discuss the converging and conflicting objectives that exist among multiple food-system actors, and argue that failure to strengthen synergies and resolve trade-offs may lead to missed opportunities and benefits, or negative unintended consequences in food system outcomes. The paper proposes a menu of promising consumer- and food-environment- oriented policy options to include in the food systems transformation agenda in order to shift LMIC consumer demand towards healthier diets in low- and middle income countries
    corecore