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Abstract

Reward prediction errors (RPEs) are thought to drive learning. This has been established in

procedural learning (e.g., classical and operant conditioning). However, empirical evidence

on whether RPEs drive declarative learning–a quintessentially human form of learning–

remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili

word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; “better-than-expected”

signals) during declarative learning improved recognition in a follow-up test, with increas-

ingly positive RPEs leading to better recognition. In addition, classic declarative memory

mechanisms such as time-on-task failed to explain recognition performance. The beneficial

effect of SRPEs on recognition was subsequently affirmed in a replication study with visual

stimuli.

Introduction

Declarative and procedural learning are key assets of the human brain. Ever since Thorndike

[1], it has been thought that reward is crucial for both forms of learning. Additionally, inspired

by the phenomenon of blocking [2], Rescorla and Wagner [3] proposed and modeled the

concept that reward prediction is crucial for learning, and that learning occurs mainly for

unexpected reward outcomes (i.e., reward prediction errors, RPEs). Their classic model fore-

shadowed many decades of work to come in the conditioning literature [4,5]. A recent surge

of interest in this concept results from the remarkable synergy between dopaminergic record-

ings in the mammal brainstem (i.e., the neural signature of RPEs [6]) and the temporal-differ-

ence RPE model [7,8]. Similar views on the role of RPEs in learning were developed in other

prominent theoretical frameworks (e.g., predictive coding [9] or the neoHebbian account

[10]). In the ensuing empirical research, the effect of RPEs has been amply demonstrated in

procedural learning paradigms such as classical and operant conditioning (e.g. [11]). However,

in these procedural learning paradigms, RPEs gradually shape the acquisition of stimulus-

response contingencies over multiple encounters. This is distinct from the typically human

ability to learn (verbal, stimulus-stimulus) information through a single encounter by declara-

tive learning.

PLOS ONE | https://doi.org/10.1371/journal.pone.0189212 January 2, 2018 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: De Loof E, Ergo K, Naert L, Janssens C,

Talsma D, Van Opstal F, et al. (2018) Signed

reward prediction errors drive declarative learning.

PLoS ONE 13(1): e0189212. https://doi.org/

10.1371/journal.pone.0189212

Editor: Etsuro Ito, Waseda University, JAPAN

Received: July 29, 2017

Accepted: November 21, 2017

Published: January 2, 2018

Copyright: © 2018 De Loof et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

available at the Open Science Framework at:

https://osf.io/dcsz7/?view_only=

cce13c70a0234333a7acfaa513d392f7/.

Funding: EDL conducted the research as a doctoral

researcher at the Research Foundation Flanders.

TV and KE were supported by grant G012816 and

KE was also supported by grant 1153418 from

Research Foundation Flanders. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

https://doi.org/10.1371/journal.pone.0189212
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189212&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189212&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189212&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189212&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189212&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189212&domain=pdf&date_stamp=2018-01-02
https://doi.org/10.1371/journal.pone.0189212
https://doi.org/10.1371/journal.pone.0189212
http://creativecommons.org/licenses/by/4.0/
https://osf.io/dcsz7/?view_only=cce13c70a0234333a7acfaa513d392f7/
https://osf.io/dcsz7/?view_only=cce13c70a0234333a7acfaa513d392f7/


Reward clearly plays a role in declarative learning [12,13] and there has been a recent surge

of interest in the influence of reward on declarative memory [12,14,15]. However, strikingly,

to date there is no direct empirical evidence for the behavioral impact (beneficial or otherwise)

of RPEs on the acquisition of declarative information. Nevertheless, findings from procedural

learning and animal research provide clear predictions on how RPEs might influence declara-

tive learning. According to the neoHebbian learning framework [10], dopamine bursts gener-

ated by the ventral tegmental area (VTA) and projected to the hippocampus amplify long term

potentiation (LTP), resulting in better memory. Rodent research has indeed demonstrated

that dopamine bursts enhance learning of spatial information, even through a single encounter

[16]. Given that dopamine is thought to implement RPEs [7,17,18], these findings suggest that

RPEs can enhance declarative learning.

To test the hypothesis that RPEs can indeed enhance declarative learning, we examined the

impact of RPEs on declarative learning in a Dutch-Swahili vocabulary acquisition task (Experi-

ment 1). On each trial, we presented a Dutch word accompanied by one, two or four possible

Swahili translations (options) to choose from. By varying the number of available options, we

manipulated the reward probability and hence the reward prediction (error). In this way, dur-

ing feedback, positive and negative RPEs of known and various sizes were coupled to the valid

Dutch-Swahili word pairs (see Fig 1); allowing us to empirically test whether RPEs drive

declarative learning. By differentiating between positive and negative RPEs we assessed

whether word pair acquisition was boosted by unsigned RPEs (URPE; indicating merely that

the outcome is different than expected) or by signed RPEs (SRPE; indicating whether the out-

come is better or worse than expected). Also, to test the durability of the influence of RPEs on

declarative learning over time, we probed recognition either immediately or after a one-day

delay. Next, we performed a first validation test on our findings by examining whether the

classic time-on-task account could alternatively explain our results. As a second validation test,

we performed a replication study with visual stimuli (Experiment 2).

Experiment 1

Methods

Participants. Forty participants (all university students; 32 female) enrolled in the study

and were rewarded €10 for participation. Half of the participants were randomly assigned to

perform the recognition test immediately after the acquisition task; the other half performed

the recognition test one day later. One gift voucher of €20 was awarded to the participant with

the best performance on the immediate recognition test; a second voucher was given to the

participant with the best performance on the recognition test one day later. All participants

were naive to the purpose of the experiment, had no prior knowledge of Swahili and had not

previously taken part in any experiment involving Swahili words. Prior to the experiment all

participants gave their informed consent in accordance with the Code of Ethics of the World

Medical Association (Declaration of Helsinki) and were debriefed afterwards. The study has

been approved by the Ethics Committee of the Faculty of Psychology and Educational Science

at Ghent University.

Material. The experiment was run on an Asus 1215N netbook running Eprime software

[19]. For the declarative learning task, 60 Dutch and 240 Swahili words were selected (see

Tables 1 and 2). At the start of the experiment, participants were informed about the three

parts of the study: the familiarization task, the acquisition task and the recognition test (see

below for a detailed description of each part).

Familiarization task. In order to familiarize the participants with the stimuli at the start

of the experiment, all Dutch and Swahili words were presented in random order for two
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Fig 1. Experiment overview (a) and experimental design (b) for Experiment 1. (a) Participants chose between one, two or four Swahili translations in the

acquisition task; the two-option condition with unrewarded choice is illustrated. Recognition and certainty were probed immediately or after a one-day delay. (b) The

3 (number of options) × 2 (obtained reward) experimental design, including number of trials and associated signed and unsigned RPE (SRPE and URPE). SRPEs were

calculated by subtracting probability of reward from obtained reward; URPE is the absolute value of SRPE. The feedback is illustrated assuming that the participant

chose ‘kito’ as the translation for ‘worm’.

https://doi.org/10.1371/journal.pone.0189212.g001
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seconds. Participants read the words in silence and pushed a keyboard button when a Dutch

word appeared.

Acquisition task. At the start of the acquisition task, participants were informed that they

were about to learn 60 Dutch-Swahili word pairs while gaining at least €8 and possibly more

than €10. In addition, they were reminded of the recognition test that would follow the experi-

ment and of the additional gift voucher of €20 for the participant with the best recognition

performance.

Table 1. Stimulus material: 240 Swahili words.

adhabu chupi jeraha kioo maisha msitu nyundo surali

adui daima jibini kisiwa maji msumari nyundu takatak

afya dakika jikoni kisu mali mtawa nzuri tamasha

aibu daraja jiwe kitanda mamba mtirka ofisi tanuri

akili dari jokofu kitande mapafu mundamo osha tembo

alizeti dizeli jua kiti mashua mungu panya trekta

amani duka jumatu kito matumai mvringo petye tumbili

asili elfu juuya kitovu matumbo mvua picha tumbo

baadaye farasi kaburi kofia maua mvuke pombe twai

bafuni fedha kahawa kovuli mazishi mwanake punda uadui

bahari filimbi kalamu kuacha mbolea mwanga punguza uchorai

baharia funzi kamba kuandika mbuzi mwezi pwani ufagio

baiski furaha kamwe kubale mbwa mzungu rafiki ugomvi

bandari garisi kartasi kubwa mchanga nanga rangi uhuru

barua geza katika kudhibi mchawi nchi rombus ukame

basi godoro kawaida kuhesa mchuzi ndaniya sabuni ukweli

bega goti kazi kujenga mdudu ndege sahani umasijo

bendi gundi kelele kukimba mechezo ndevu samaki uongo

bilaska guruwe kemia kumba mekno ndizi sayari usiku

bloke haki kengele kumbuka mfuko ndogo seesaw uyoga

buli hamsi kesho kununa mgonjwa ndoora sehemu viatu

bunifu hasira kiatu kunywa miaka ndugu seri wakala

bustani hatua kichwa kupanda mkasi neyemba shimoni washia

chaki hazini kidole kusanya mkate ngazi shule welder

chombo hofu kifua kushoto mkoba ngono simu wengine

choori ijayo kihozi kusikiza mkuu ngozi singizi wimbo

chubani imani kijiko kuzama mlango nopya soko wingi

chuki ishara kikapu kweli moyo nyange starehe wingu

chuma ishiri kimysa leso mpishi nyeusi stork yatima

chupa jansa kinywa mageho mraba nyota sufuria zeituni

https://doi.org/10.1371/journal.pone.0189212.t001

Table 2. Stimulus material: 60 Dutch words.

agent bord ezel kaas mest rijst stoel wolk

anker brief fiets kassa nacht schat stoom wonde

appel bril goud knie neus sjaal stuur worm

bezem broek graf laken olijf slaap touw zomer

bier brood hamer lamp oven slang trein

bloem doos haven lepel paard slot tuin

boer eend hond lijm poort stier verf

boot emmer hoofd melk regen stift water

https://doi.org/10.1371/journal.pone.0189212.t002
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At the start of each trial, one Dutch word was presented at the top of the screen with four

Swahili words below (Fig 1A). All words remained on screen for four seconds as participants

read through the options. Next, a frame appeared around the possible Swahili translations for

the Dutch word. In the one-option condition only one Swahili word was framed, immediately

indicating the correct Swahili translation. In the two-option condition a frame appeared

around two Swahili words so participants had a 50% chance of choosing the correct transla-

tion. Finally, in the four-option condition all four Swahili words were framed, resulting in a

25% chance of choosing the correct Swahili translation. Four keyboard buttons were assigned

to the four word positions and participants responded with the index and middle finger of

their left and right hand. There was no time constraint on the decision but participants were

encouraged to follow their first impression.

Unbeknownst to the participants, the accuracy of the chosen translations in the acquisition

task was determined in advance. Specifically, a fixed number of trials was predetermined to

have one, two or four valid Swahili options; and to be rewarded or unrewarded (Fig 1B). In

this way, participants did not necessarily learn the actual Swahili translations of the Dutch

words. For example, if a trial had been predetermined to be a two-option trial with a rewarded

answer, the participants would be rewarded irrespective of their choice and this chosen word

would be the translation they had to memorize. Moreover, for each Dutch word four randomly

drawn Swahili words were presented, usually not including the actual translation. This made

sure we had a fixed number of trials in each cell of the design (Fig 1B); moreover, it excluded

any linguistic regularity in Dutch-Swahili word pairs that could influence learning. Partici-

pants were debriefed about this manipulation at the end of the experiment.

Thus, after the participants chose a Swahili translation among the possible options, feed-

back on the rewarded translation was given. The Dutch word, an equation sign and the (so-

called) correct Swahili word appeared at the center of the screen. If the chosen Swahili transla-

tion was rewarded, a green frame was presented around the Dutch word and the chosen Swa-

hili word, while participants heard the sound of money tumbling in a cup (three seconds).

Alternatively, if the chosen Swahili translation was unrewarded, a red frame appeared around

the Dutch word and one of the other possible Swahili word options, while an error buzz was

played (three seconds). The words remained on the screen for five seconds and participants

were instructed to use this time to learn the word pair by heart for the recognition test. The

trial ended with a 2.5 seconds presentation of the total reward collected thus far. Participants

won €0.28 on rewarded trials; no money was added on unrewarded trials. Because all partici-

pants were rewarded on 35 trials (see Fig 1B) the total reward always equaled €9.80, which was

rounded to €10.

Recognition test. A magnitude comparison task was used as a filler task to reduce recency

effects in the immediate recognition test. In order to keep both versions of the experiment as

similar as possible, the filler task was also presented to participants who would perform the

recognition test one day later. Participants categorized 400 numbers between 1 and 9 (exclud-

ing 5) as being smaller or larger than 5 (left and right button presses respectively).

At the start of the recognition test, participants were reminded about the additional gift

voucher of €20 for the best-performing participant. The Dutch word appeared at the top of the

screen with the same four Swahili words below. However, the order of the four Swahili words

was randomized and participants were warned about this change. As soon as the words

appeared, participants could choose between the four Swahili words by using the same four

response buttons as in the acquisition task. No time constraints were imposed on their answer.

After a Swahili word was chosen, participants indicated how certain they were about their

answer: ‘very uncertain’, ‘rather uncertain’, ‘rather certain’ or ‘very certain’ (measured on a
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scale from 1 ‘very uncertain’ to 4 ‘very certain’). No feedback was provided after a recognition

trial.

Data analysis. The SRPEs were calculated by subtracting the reward probability (i.e., 1,

0.5 and 0.25 probability of a rewarded choice in the one-, two- and four-option condition,

respectively) from the obtained reward (i.e., 1 reward on rewarded trials and 0 reward on unre-

warded trials). Thus a unique SRPE ranging from -0.50 to 0.75 was calculated for each cell in

the design (see Fig 1B for a full overview). The URPEs were calculated by taking the absolute

value of the SRPEs. Note that the URPEs and SRPEs differ on the unrewarded trials, allowing

us to differentiate between both accounts.

Unless mentioned otherwise, statistical analyses were performed within the linear mixed

effects models framework. A linear mixed effects model was applied for a continuous depen-

dent variable (e.g., certainty ratings in the recognition test) and a generalized linear mixed

effects model was applied for binary dependent variables (e.g., recognition accuracy). Each

model contained a random intercept across participants and centered predictors (e.g., number

of options, obtained reward and SRPEs during the acquisition task). All analyses were run in

R. When during the acquisition task a Swahili translation was chosen which was not framed as

a possible option, the corresponding word pair was excluded from the analyses.

Results

Three out of 40 participants (one in the immediate and two in the delayed test group) were

removed from the dataset because of technical problems during the experiment. Mean recog-

nition accuracies and certainty ratings per condition for Experiment 1 are presented in Fig 2

(full lines). Recognition accuracy was significantly higher in the immediate test group than in

the delayed test group, χ2(1, N = 37) = 15.7, p< 0.001 (immediate group, 40% to 90%,

M = 67.4%, SD = 14.4%; delayed group, 27% to 73%, M = 50.7%, SD = 11.6%). Therefore, test

delay is included as a factor in the following analyses.

Differentiating the effect of URPEs and SRPEs. First, we disentangled the role of URPEs

and SRPEs (Fig 1B) by testing the effect of number of options, reward, and their interaction on

recognition accuracy. The URPE and SRPE accounts predict a similar pattern for positive

RPEs (rewarded trials, plotted as full circles in Fig 2), but differ in their predictions for the neg-

ative RPEs (unrewarded trials; plotted as empty circles in Fig 2). That is, the URPE account

predicts a significant interaction between the number of options and obtained reward, whereas

the SRPE account predicts no such interaction.

As Fig 2A–2D reveals, there was a significant main effect of reward, χ2(1, N = 37) = 24.5,

p< 0.001, with rewarded choices being remembered more accurately. In addition, recognition

accuracy increased with the number of options, χ2(1, N = 37) = 36.8, p< 0.001. Contrary to

the URPE account, but consistent with the SRPE account, there was no significant interaction

between the number of options and reward, χ2(1, N = 37) = 1.42, p = 0.23. Note that the effects

of both reward and number of options were rather large (i.e., an average accuracy increase of

13.75% across the number of options and 8.9% for reward).

As a direct test of the URPE versus SRPE accounts, we tested the number of options effect

in unrewarded trials only. As mentioned above, the URPE and SRPE accounts predict an

increasing and decreasing pattern with number of options, respectively. In line with the SRPE,

but against the URPE account, we observed a significant increase, χ2(1, N = 37) = 9.45,

p = 0.0021.

Furthermore, the URPE account predicts increased recognition for both large positive and

large negative RPEs (depicted on abscissa in Fig 2E–2H), which would result in a quadratic

effect of SRPE on memory performance. The SRPE account in contrast predicts enhanced

Signed RPEs drive declarative learning
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Fig 2. Recognition accuracy (panel a through f; y-axis) and certainty ratings (panel g and h; y-axis). Recognition accuracy

and certainty ratings as a function of the number of options (panel a through d; x-axis) or the SRPEs (panel e through h; x-

Signed RPEs drive declarative learning
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recognition for large positive RPEs but reduced recognition for large negative RPEs, resulting

in SRPE (abscissa in Fig 2E–2H) as a linear predictor of memory performance. Formally prob-

ing whether declarative memory performance improved linearly with SRPEs, recognition was

significantly enhanced with increasing SRPEs, χ2(1, N = 37) = 27.4, p< 0.001 (Fig 2E and 2F;

note that Fig 2E and 2F offers a different visualization of the same data points represented in

Fig 2A–2D), consistent with the SRPE account.

As yet another way of differentiating the two models, we fitted a linear model where the

SRPE terms were replaced by URPE terms (both shown in Fig 1). This URPE-based model fit-

ted worse than the original SRPE-based one; AIC values for original (SRPE-based) and alterna-

tive (URPE-based) models were 2834.5 and 2848.7, respectively.

The certainty ratings revealed a similar pattern (Fig 2G and 2H). In line with the SRPE

account, higher SRPEs resulted in significantly higher certainty ratings, χ2(1, N = 37) = 9.49,

p = 0.0021. While the interaction between SRPE and test delay had no significant effect on rec-

ognition certainty, χ2(1, N = 37) = 0.039, p = 0.84, there was an interaction between SRPEs and

recognition accuracy, χ2(1, N = 37) = 4.56, p = 0.033, and a marginally significant three-way

interaction between SRPE, recognition accuracy and test delay, χ2(1, N = 37) = 3.25, p = 0.071.

Follow-up tests revealed that SRPEs had no significant effect on certainty ratings for the false

recognitions (neither in the immediate test group, χ2(1, N = 19) = 1.76, p = 0.18, nor the

delayed test group, χ2(1, N = 18) = 2.021, p = 0.16), but did significantly predict certainty rat-

ings for the correctly recognized word pairs in the immediate, χ2(1, N = 19) = 4.24, p = 0.039,

and delayed test group, χ2(1, N = 18) = 7.27, p = 0.0070. The fact that the SRPEs only influence

certainty ratings for the correctly recognized word pairs and not for false alarms further cor-

roborates our finding that SRPEs drive declarative learning.

Testing the time-on-task account. As a first validation test, we verified whether our

results could alternatively be explained by the classic time-on-task account, according to

which the time spent on a task would determine recognition accuracy. To this purpose, we

first tested whether longer deliberation on the one, two or four valid Swahili options on indi-

vidual trials would lead to better recognition. To approximate the time devoted to each option

(Swahili word) on a particular trial, we divided the deliberation time by the number of options.

The resulting time-on-task per option (time-on-word) revealed that each word was examined

longer when less options were available (the mean time-on-word on the one-, two- and four-

option trials was 2880 ms, 1826 ms and 1169 ms, respectively). This argues against a time-on-

task account as recognition performance increased with the number of options while the time-

on-word decreased when more options were available. We then tested whether increased

(trial-to-trial) time-on-word would improve recognition. Counter to the predictions from the

time-on-task account, there was no significant influence of time-on-word on recognition,

χ2(1, N = 37) = 1.48, p = 0.22. Follow-up tests for one-, two- or four-option trials separately

confirmed that recognition was not significantly influenced by the (trial-to-trial) time-on-

word (one-option trials, χ2(1, N = 37) = 0.096, p = 0.76; two-option trials, χ2(1, N = 37) =

axis) in the immediate test group (left column) and their equivalent in the delayed test group (right column). The results of

Experiment 1 are indicated by the black full line; the results of Experiment 2 are plotted with a grey dashed lines (95%

confidence intervals are indicated for Experiment 1 only). To elucidate the relation between panel a-d and panel e-f, empty

circles represent the unrewarded trials and full circles the rewarded trials. Note that in the one-option condition the chosen

translation was always rewarded (panel a through d). For each number of options and depending on the reward and delay (as

well as for the SRPEs), the average recognition accuracy/certainty and its 95% confidence interval was estimated and

superimposed. (a-f) Recognition increased significantly with an increasing number of options and recognition was enhanced

for rewarded word pairs; thus recognition increased significantly with higher SRPEs. Performance at chance level is indicated

by the gray dotted line at 25% accuracy. (g and h) SRPEs significantly predicted certainty ratings for correctly recognized

word pairs (depicted in blue) but not for incorrectly recognized word pairs (depicted in orange).

https://doi.org/10.1371/journal.pone.0189212.g002
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0.026, p = 0.87; four-option trials, χ2(1, N = 37) = 2.52, p = 0.11). The result of the one-option

trials is particularly interesting as participants could already start learning the word pair during

the deliberation time. Still, even in the one-option condition longer deliberation on the valid

Dutch-Swahili word pair failed to result in better declarative learning.

Experiment 2

Experiment 1 demonstrated a clear effect of SRPE on declarative memory. As a second valida-

tion test and replication of this finding, in Experiment 2 we investigated the generalizability

across input modalities. Here we tested the effect of RPE on the acquisition of pictures rather

than words. The experimental design is the same as in Experiment 1 unless noted otherwise

(i.e., the design was slightly adjusted to better fit future EEG research; no EEG data were cur-

rently collected).

Methods

Participants. Forty participants (29 female) were randomly assigned to either the imme-

diate or delayed test group (20 participants in each group). None of the participants had previ-

ously taken part in Experiment 1 or had any knowledge of Swahili.

Materials. A total of 240 Swahili words were used (identical to Experiment 1, see Table 1

and Table 2) and 60 figures were selected from the colorized Snodgrass and Vanderwart data-

set [20,21]. Like Experiment 1, Experiment 2 consisted of three parts: the familiarization task,

the acquisition task and the recognition test.

Familiarization task. Participants were shown the 240 Swahili words, randomly inter-

mixed with 60 figures accompanied by their Dutch meaning. The stimuli appeared in random

order for a duration of two seconds each. Participants were instructed to press the spacebar

whenever a figure was shown.

Acquisition task. At the beginning of the acquisition task, participants were told they

would learn 60 figure-word pairs and would earn up to €10 for taking part in the study. They

were reminded that a gift voucher of €20 would be awarded to the participant with the best

recognition performance.

On each trial, one figure was accompanied by four Swahili words (Fig 3A). After four sec-

onds, frames surrounded either one, two or four Swahili words. These frames indicated out of

which Swahili translations participants were allowed to choose as the translation for the figure

(no time constraint). After participants made their choice, there was a reward anticipation

phase (three seconds). Participants were then given reward and performance feedback (three

seconds) followed by the to-be-learned figure-word pair (five seconds). Each trial ended with a

2.5 seconds reward update indicating how much participants had earned up until the last com-

pleted trial. Note that the reward schedule of Experiment 2 is exactly the same as in Experi-

ment 1 (Fig 3B), thus all participants were rewarded €9.80 (rounded to €10) for a total of 35

rewarded trials.

Recognition test. The magnitude comparison task was again presented as a filler task to

reduce recency effects in the recognition test.

On each trial of the recognition test, one figure was presented at the top of the screen

together with the same four Swahili words as in the acquisition task (Fig 3A). In analogy to

Experiment 1, the order of the Swahili words was randomized to avoid learning based on spa-

tial position. No time constraint was imposed. After selecting their response, participants were

asked how certain they were of their answer. At the end of each trial, they were given feedback

on the accuracy of their answer.
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Results

The results of Experiment 2 largely replicated those of Experiment 1, and will therefore be

reported more concisely. Accuracy was significantly higher in the immediate test group

Fig 3. Experiment overview (a) and experimental design (b) for Experiment 2. The general trial structure and experimental design of Experiment 2 are largely a

replication of Experiment 1.

https://doi.org/10.1371/journal.pone.0189212.g003
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compared to the delayed test group, χ2(1, N = 40) = 19.1, p< 0.001 (immediate group, 55% to

100%, M = 81.5%, SD = 13.5%; delayed group, 37% to 93%, M = 59.3%, SD = 16.2%).

The data revealed a significant main effect of reward, χ2(1, N = 40) = 13.3, p< 0.001 (Fig

2A–2D, dashed grey lines depict results from Experiment 2). Recognition accuracy was higher

for rewarded choices compared to unrewarded choices. Recognition accuracy also increased

with number of options, χ2(1, N = 40) = 10.2, p = 0.0014. Importantly, the interaction between

reward and number of options was not significant, χ2(1, N = 40) = 2.17, p = 0.14. These results

are again in favor of the SPRE account. Effects of both reward and number of options were

again rather large (i.e., an average accuracy increase of 4.75% across the number of options

and 6.33% for reward).

Next, we verified whether recognition accuracy linearly increased with SRPEs. There was a

significant positive effect of SRPE, χ2(1, N = 40) = 13.4, p< 0.001, with larger and more posi-

tive RPEs leading to increased recognition accuracy (Fig 2E–2F). Then, as in Experiment 1, we

fitted an alternative URPE-based model to compare it with the SRPE-based one. As in Experi-

ment 1, the AIC value was lower (better fit) for the SRPE-based model (AIC values are 2596

and 2588 for URPE-based and SRPE-based models, respectively).

For the certainty ratings there was a significant main effect of recognition accuracy, χ2(1,

N = 40) = 426, p< 0.001, indicating that participants were more certain of correctly recognized

figure-word pairs (Fig 2G and 2H). In addition, the certainty ratings revealed a significant

interaction between SRPE and recognition accuracy, χ2(1, N = 40) = 5.32, p = 0.021. Follow-up

analysis showed that SRPE only influenced certainty for correctly recognized figure-word

pairs, χ2(1, N = 40) = 6.90, p = 0.0086, but not for incorrectly recognized figure-word pairs,

χ2(1, N = 40) = 0.97, p = 0.33. In line with Experiment 1, SRPE thus only increased certainty

for correctly recognized figure-word pairs and had no effects on false recognitions.

Finally, the time-on-word analysis resulted in the same pattern of results as in Experiment

1. The time-on-word decreased as the number of options increased (2762 ms, 1770 ms and

1007 ms, for the one-, two- and four-option trials respectively) and failed to significantly pre-

dict the recognition accuracy, χ2(1, N = 40) = 0.058, p = 0.81.

Discussion

In two experiments, we demonstrate that signed reward prediction errors (SRPEs) drive

declarative learning. Earlier work already demonstrated effects of reward and RPEs on percep-

tual, procedural, and motor learning; of reward on declarative learning; of RPE on neural

responses in declarative learning; and of RPEs on recognition criterion setting. However, in

the current study we provide direct empirical evidence on whether RPEs influences perfor-

mance in declarative learning. To do so, positive and negative RPEs of known and various

sizes were generated by manipulating the number of options available in a vocabulary acquisi-

tion task. Perhaps the most striking aspect of our findings was that more response options

improved performance, which is predicted by our SRPE account, but against intuition (or the

time-on-task account) because subjects can actually start studying more quickly when there

are fewer alternatives. Thus, our results provide the first demonstration that stimuli associated

with large, positive RPEs during learning, are later recognized more accurately and with higher

certainty; despite only a single exposure during declarative learning. In addition, while the

importance of URPEs (“different than expected” signals [22,23]) has been shown in procedural

learning paradigms [5,11,24] our analysis suggests that declarative learning is driven by SRPEs

(“better than expected” signals).

These results further our understanding of how motivational cues determine which infor-

mation is prioritized for encoding in memory. As discussed previously, the neoHebbian
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learning account [10] predicts that declarative learning depends on pre- and postsynaptic

activity, which relation is further modulated by dopamine bursts. These dopaminergic

responses are thought to follow an SRPE signature, with a stronger response to outcomes that

are better than expected [7]. Critically, these dopamine bursts can be caused by a variety of

motivational cues such as RPEs, novelty and salience. Previous research has indeed demon-

strated that declarative learning is enhanced by reward anticipation [12,13], exposure to novel

environments [25], exposure to prediction errors not related to reward [26] and the exposure

to salient (emotional) stimuli more generally [27]. Critically, we provide a first empirical vali-

dation of the effect of RPEs on (behavioral performance in) declarative memory (in humans).

Beyond the neoHebbian account, our findings resonate with a recent interest in relation-

ships and overlaps between concepts developed in the declarative and procedural learning lit-

eratures (e.g., [28,29]). Metcalfe reviews a body of work demonstrating the important role of

making errors in declarative memory performance [30]. For example, Metcalfe and colleagues

have extensively reported on the hypercorrection effect, showing that high-confidence errors

are easier to correct than low-confidence ones (e.g., [31]). Tricomi and colleagues have in sev-

eral papers shown that caudate nucleus (typically associated with procedural learning) is also

activated in feedback processing in declarative learning. An important finding emerging from

this work is that caudate is not just active when reward (either in declarative or procedural

contexts) is processed; but that caudate is activated to the extent that the feedback is useful for

learning about task contingencies. This is explained based on a goal attainment theory of cau-

date nucleus (e.g., [32–34]). It is not clear at this time how neoHebbian, error, and goal attain-

ment theories can be conceptually integrated. However, what is clear is that a rich set of

interactions between different types of learning, usually studied separately, remain to be

explored, at both theoretical and empirical levels.

As declarative learning plays a predominant part in education, these results stress the need

for a better understanding of the role that reward (and its prediction) plays in declarative

learning. Despite an early reluctance of educational theorists toward incorporating reward in

educational settings, its role has been reconsidered in recent years [35]. One potential illustra-

tion is the testing effect [36]. The testing effect refers to the finding that testing, rather than

mere studying, dramatically improves performance in a later recall test [37,38]. In a seminal

publication, Karpicke and Roediger empirically manipulated the amount of study and test tri-

als allotted to Swahili-English word pairs [38]. In a follow-up test one week later, the authors

found that additional study trials during the acquisition session had no strong beneficial effect

on retention. Conversely, recall was strongly enhanced by additional test trials during acquisi-

tion. Although this testing effect has consistently been observed to drive declarative learning

and holds major educational implications [39], its origin has remained unclear. From the cur-

rent standpoint, we may reinterpret this finding as resulting from RPEs. In particular, we

hypothesize that during testing, predictions are generated that are then followed by either

external feedback (from an instructor or experimenter) or by internal self-generated feedback.

Internal and external feedback indeed have the same neural signatures [40]. Such feedback

may generate RPEs, resulting in a facilitatory effect of testing. Thus, active predictions and

their entailing RPEs may drive declarative learning (even in the absence of external feedback

[41,42]). An interesting case in point is a study in which participants learned cue-target word

pairs with a strong or weak semantic association [43]. Whereas restudying the material equally

improved the retention of strongly and weakly associated word pairs, repeated testing

improved recall of weakly associated word pairs more compared to strongly associated words.

Moreover, in the final test the recall for the weak semantic associations surpassed that of the

strong semantic associations. Although counter-intuitive at first glance, these findings follow

naturally from the beneficial effect of RPEs on declarative learning as weak associations leave
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more room for the formation of large RPEs. More broadly, the natural occurrence of RPEs

during learning might be why testing, elaborative interrogation and self-explanation outper-

form other active learning strategies such as summarizing, keyword mnemonics and imagery

[44]. Future research should make this connection more direct, especially in light of the recent

trend toward gamification in educational settings.

In sum, we demonstrate that SRPEs drive declarative learning, closing the gap between

research on reward learning and declarative memory. Our results are in line with the neoHeb-

bian learning framework and suggest new avenues to improve learning in both informal and

educational settings.
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of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory for-

mation. Neuron. 2005; 45: 459–467. https://doi.org/10.1016/j.neuron.2005.01.010 PMID: 15694331

14. Scimeca JM, Katzman PL, Badre D. Striatal prediction errors support dynamic control of declarative

memory decisions. Nat Commun. 2016; 7: 13061. https://doi.org/10.1038/ncomms13061 PMID:

27713407

15. Wimmer GE, Braun EK, Daw ND, Shohamy D. Episodic memory encoding interferes with reward learn-

ing and decreases striatal prediction errors. J Neurosci. 2014; 34: 14901–14912. https://doi.org/10.

1523/JNEUROSCI.0204-14.2014 PMID: 25378157

16. Bethus I, Tse D, Morris RGM. Dopamine and memory: Modulation of the persistence of memory for

novel hippocampal NMDA receptor-dependent paired associates. J Neurosci. 2010; 30: 1610–1618.

https://doi.org/10.1523/JNEUROSCI.2721-09.2010 PMID: 20130171

17. Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N. Neuron-type-specific signals for reward and pun-

ishment in the ventral tegmental area. Nature. 2012; 482: 85–88. https://doi.org/10.1038/nature10754

PMID: 22258508

18. Eshel N, Bukwich M, Rao V, Hemmelder V, Tian J, Uchida N. Arithmetic and local circuitry underlying

dopamine prediction errors. Nature. NATURE PUBLISHING GROUP, MACMILLAN BUILDING, 4 CRI-

NAN ST, LONDON N1 9XW, ENGLAND; 2015; 525: 243–246. https://doi.org/10.1038/nature14855

PMID: 26322583

19. Schneider W, Eschman A, Zuccolotto A. E-Prime User’s Guide. Pittsburgh: Psychology Software

Tools, Inc.; 2012.

20. Rossion B, Pourtois G. Revisiting Snodgrass and Vanderwart’s object pictorial set: The role of surface

detail in basic-level object recognition. Perception. 2004; 33: 217–236. https://doi.org/10.1068/p5117

PMID: 15109163

21. Snodgrass JG, Vanderwart M. A standardized set of 260 pictures: Norms for name agreement, image

agreement, familiarity, and visual complexity. J Exp Psychol Hum Learn Mem. 1980; 6: 174–215.

https://doi.org/10.1037/0278-7393.6.2.174

22. Bryden DW, Johnson EE, Tobia SC, Kashtelyan V, Roesch MR. Attention for learning signals in anterior

cingulate cortex. J Neurosci. 2011; 31: 18266–18274. https://doi.org/10.1523/JNEUROSCI.4715-11.

2011 PMID: 22171031

23. Hayden BY, Heilbronner SR, Pearson JM, Platt ML. Surprise signals in anterior cingulate cortex: Neuro-

nal encoding of unsigned reward prediction errors driving adjustment in behavior. J Neurosci. 2011; 31:

4178–4187. https://doi.org/10.1523/JNEUROSCI.4652-10.2011 PMID: 21411658

24. Sevenster D, Beckers T, Kindt M. Prediction error governs pharmacologically induced amnesia for

learned fear. Science. 2013; 339: 830–833. https://doi.org/10.1126/science.1231357 PMID: 23413355

25. Fenker DB, Frey JU, Schuetze H, Heipertz D, Heinze H-J, Duzel E. Novel scenes improve recollection

and recall of words. J Cogn Neurosci. M I T PRESS, 238 MAIN STREET, STE 500, CAMBRIDGE, MA

02142–1046 USA; 2008; 20: 1250–1265. https://doi.org/10.1162/jocn.2008.20086 PMID: 18284351

26. Greve A, Cooper E, Kaula A, Anderson MC, Henson R. Does prediction error drive one-shot declarative

learning? J Mem Lang. 2017; 94: 149–165. https://doi.org/10.1016/j.jml.2016.11.001 PMID: 28579691

27. Anderson AK, Wais PE, Gabrieli JDE. Emotion enhances remembrance of neutral events past. Proc

Natl Acad Sci U S A. 2006; 103: 1599–1604. https://doi.org/10.1073/pnas.0506308103 PMID:

16434476

28. Ackerman PL, Beier ME, Boyle MD. Individual differences in working memory within a nomological net-

work of cognitive and perceptual speed abilities.

29. Murty VP, DuBrow S, Davachi L. The Simple Act of Choosing Influences Declarative Memory. J Neu-

rosci. 2015; 35: 6255–6264. https://doi.org/10.1523/JNEUROSCI.4181-14.2015 PMID: 25904779

30. Metcalfe J. Learning from Errors. Annu Rev Psychol. Annual Reviews; 2017; 68: 465–489. https://doi.

org/10.1146/annurev-psych-010416-044022 PMID: 27648988

Signed RPEs drive declarative learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0189212 January 2, 2018 14 / 15

https://doi.org/10.1016/j.tins.2011.07.006
http://www.ncbi.nlm.nih.gov/pubmed/21851992
https://doi.org/10.1038/nn.3413
http://www.ncbi.nlm.nih.gov/pubmed/23708143
https://doi.org/10.1016/j.neuron.2006.03.036
https://doi.org/10.1016/j.neuron.2006.03.036
http://www.ncbi.nlm.nih.gov/pubmed/16675403
https://doi.org/10.1016/j.neuron.2005.01.010
http://www.ncbi.nlm.nih.gov/pubmed/15694331
https://doi.org/10.1038/ncomms13061
http://www.ncbi.nlm.nih.gov/pubmed/27713407
https://doi.org/10.1523/JNEUROSCI.0204-14.2014
https://doi.org/10.1523/JNEUROSCI.0204-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25378157
https://doi.org/10.1523/JNEUROSCI.2721-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20130171
https://doi.org/10.1038/nature10754
http://www.ncbi.nlm.nih.gov/pubmed/22258508
https://doi.org/10.1038/nature14855
http://www.ncbi.nlm.nih.gov/pubmed/26322583
https://doi.org/10.1068/p5117
http://www.ncbi.nlm.nih.gov/pubmed/15109163
https://doi.org/10.1037/0278-7393.6.2.174
https://doi.org/10.1523/JNEUROSCI.4715-11.2011
https://doi.org/10.1523/JNEUROSCI.4715-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22171031
https://doi.org/10.1523/JNEUROSCI.4652-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21411658
https://doi.org/10.1126/science.1231357
http://www.ncbi.nlm.nih.gov/pubmed/23413355
https://doi.org/10.1162/jocn.2008.20086
http://www.ncbi.nlm.nih.gov/pubmed/18284351
https://doi.org/10.1016/j.jml.2016.11.001
http://www.ncbi.nlm.nih.gov/pubmed/28579691
https://doi.org/10.1073/pnas.0506308103
http://www.ncbi.nlm.nih.gov/pubmed/16434476
https://doi.org/10.1523/JNEUROSCI.4181-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25904779
https://doi.org/10.1146/annurev-psych-010416-044022
https://doi.org/10.1146/annurev-psych-010416-044022
http://www.ncbi.nlm.nih.gov/pubmed/27648988
https://doi.org/10.1371/journal.pone.0189212


31. Metcalfe J, Finn B. People’s hypercorrection of high-confidence errors: Did they know it all along? J Exp

Psychol Learn Mem Cogn. 2011; 37: 437–448. https://doi.org/10.1037/a0021962 PMID: 21355668

32. Tricomi E, Fiez J. Information content and reward processing in the human striatum during performance

of a declarative memory task. Cogn Affect Behav Neurosci. 2012;

33. Tricomi EM, Delgado MR, Fiez JA. Modulation of Caudate Activity by Action Contingency. Neuron. Cell

Press; 2004; 41: 281–292. https://doi.org/10.1016/S0896-6273(03)00848-1 PMID: 14741108

34. Tricomi E, Fiez JA. Feedback signals in the caudate reflect goal achievement on a declarative memory

task. Neuroimage. Academic Press; 2008; 41: 1154–1167. https://doi.org/10.1016/j.neuroimage.2008.

02.066 PMID: 18445531

35. Howard-Jones PA, Jay T. Reward, learning and games. Curr Opin Behav Sci. 2016; 10: 65–72. https://

doi.org/10.1016/j.cobeha.2016.04.015

36. Gates AI. Recitation as a factor in memorization. Arch Psychol. 1917; 6: 112–121.

37. Roediger HL, Putnam AL, Smith MA. Ten benefits of testing and their applications to educational prac-

tice. Psychol Learn Motiv. Elsevier Inc.; 2011; 55. https://doi.org/10.1016/B978-0-12-387691-1.00001–

6

38. Karpicke JD, Roediger HL. The critical importance of retrieval for learning. Science. 2008; 319: 966–

968. https://doi.org/10.1126/science.1152408 PMID: 18276894

39. Howard-Jones PA. Neuroscience and education: myths and messages. Nat Rev Neurosci. Nature Pub-

lishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2014; 15: 817–824.

https://doi.org/10.1038/nrn3817 PMID: 25315391

40. Holroyd CB, Nieuwenhuis S, Yeung N, Nystrom L, Mars RB, Coles MGH, et al. Dorsal anterior cingulate

cortex shows fMRI response to internal and external error signals. Nat Neurosci. 2004; 7: 497–498.

https://doi.org/10.1038/nn1238 PMID: 15097995

41. Aarts K, De Houwer J, Pourtois G. Evidence for the automatic evaluation of self-generated actions.

Cognition. 2012; 124: 117–127. https://doi.org/10.1016/j.cognition.2012.05.009 PMID: 22687531

42. Schouppe N, Braem S, De Houwer J, Silvetti M, Verguts T, Ridderinkhof KR, et al. No pain, no gain:

The affective valence of congruency conditions changes following a successful response. Cogn Affect

Behav Neurosci. 2015; 15: 251–261. https://doi.org/10.3758/s13415-014-0318-3 PMID: 25183556

43. Carpenter SK. Cue strength as a moderator of the testing effect: The benefits of elaborative retrieval. J

Exp Psychol Learn Mem Cogn. AMER PSYCHOLOGICAL ASSOC, 750 FIRST ST NE, WASHING-

TON, DC 20002–4242 USA; 2009; 35: 1563–1569. https://doi.org/10.1037/a0017021 PMID: 19857026

44. Dunlosky J, Rawson KA, Marsh EJ, Nathan MJ, Willingham DT. Improving students’ learning with effec-

tive learning techniques: Promising directions from cognitive and educational psychology. Psychol Sci

Public Interes. 2013; 14: 4–58. https://doi.org/10.1177/1529100612453266 PMID: 26173288

Signed RPEs drive declarative learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0189212 January 2, 2018 15 / 15

https://doi.org/10.1037/a0021962
http://www.ncbi.nlm.nih.gov/pubmed/21355668
https://doi.org/10.1016/S0896-6273(03)00848-1
http://www.ncbi.nlm.nih.gov/pubmed/14741108
https://doi.org/10.1016/j.neuroimage.2008.02.066
https://doi.org/10.1016/j.neuroimage.2008.02.066
http://www.ncbi.nlm.nih.gov/pubmed/18445531
https://doi.org/10.1016/j.cobeha.2016.04.015
https://doi.org/10.1016/j.cobeha.2016.04.015
https://doi.org/10.1016/B978-0-12-387691-1.000016
https://doi.org/10.1016/B978-0-12-387691-1.000016
https://doi.org/10.1126/science.1152408
http://www.ncbi.nlm.nih.gov/pubmed/18276894
https://doi.org/10.1038/nrn3817
http://www.ncbi.nlm.nih.gov/pubmed/25315391
https://doi.org/10.1038/nn1238
http://www.ncbi.nlm.nih.gov/pubmed/15097995
https://doi.org/10.1016/j.cognition.2012.05.009
http://www.ncbi.nlm.nih.gov/pubmed/22687531
https://doi.org/10.3758/s13415-014-0318-3
http://www.ncbi.nlm.nih.gov/pubmed/25183556
https://doi.org/10.1037/a0017021
http://www.ncbi.nlm.nih.gov/pubmed/19857026
https://doi.org/10.1177/1529100612453266
http://www.ncbi.nlm.nih.gov/pubmed/26173288
https://doi.org/10.1371/journal.pone.0189212

