121 research outputs found

    The cosmic X-ray experiment aboard HEAO-1

    Get PDF
    The HEAO-1 A-2 experiment, designed to study the large scale structure of the galaxy and the universe at X-ray energies is described. The instrument consists of six gas proportional counters of three types nominally covering the energy ranges of 0.15-3 keV, 1.2-20 keV, and 2.5-60 keV. The two low energy detectors have about 400 sq cm open area each while the four others have about 800 sq cm each. Dual field of view collimators allow the unambiguous determination of instrument internal background and diffuse X-ray brightness. Instrument characteristics and early performance are discussed

    Far Ultraviolet Absolute Flux of alpha Virginis

    Full text link
    We present the far ultraviolet spectrum of alpha Virginis taken with EURD spectrograph on-board MINISAT-01. The spectral range covered is from ~900 to 1080 A with 5 A spectral resolution. We have fitted Kurucz models to IUE spectra of alpha Vir and compared the extension of the model to our wavelengths with EURD data. This comparison shows that EURD fluxes are consistent with the prediction of the model within 20-30%, depending on the reddening assumed. EURD fluxes are consistent with Voyager observations but are ~60% higher than most previous rocket observations of alpha Vir.Comment: 13 pages, 4 figures. Submitted to The Astrophysical Journa

    Radiative Transfer Analysis of Far-UV Background Observations Obtained with the Far-Ultraviolet Space Telescope (FAUST)

    Get PDF
    In 1992 the Far-Ultraviolet Space Telescope (FAUST) provided measurements of the ultraviolet (140-180nm) diffuse sky background at high, medium, and low Galactic latitudes. A significant fraction of the detected radiation was found to be of Galactic origin, resulting from scattering by dust in the diffuse interstellar medium. To simulate the radiative transfer in the Galaxy, we employed a Monte Carlo model which utilized a realistic, non-isotropic radiation field based on the measured fluxes (at 156nm) and positions of 58,000 TD-1 stars, and a cloud structure for the interstellar medium. The comparison of the model predictions with the observations led to a separation of the Galactic scattered radiation from an approximately constant background, attributed to airglow and extragalactic radiation, and to a well constrained determination of the dust scattering properties. The derived dust albedo a = 0.45 +/- 0.05 is substantially lower than albedos derived for dust in dense reflection nebulae and star-forming regions, while the phase function asymmetry g = 0.68 +/- 0.10 is indicative of a strongly forward directed phase function. We show the highly non-isotropic phase function to be responsible, in conjunction with the non-isotropic UV radiation field, for the wide range of observed correlations between the diffusely scattered Galactic radiation and the column densities of neutral atomic hydrogen. The low dust albedo is attributed to a size distribution of grains in the diffuse medium with average sizes smaller than those in dense reflection nebulae.Comment: 35 pages, 10 figures included, to be published in the Ap

    ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A Fiber View Camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.Comment: Accepted versio

    Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare

    Full text link
    A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.Comment: 26 pages, 9 figures, accepted to Solar Physic

    Reconsidering the Barefoot Doctor Programme

    Get PDF
    This paper examines the widely acclaimed Barefoot Doctor campaign in China. The Barefoot Doctor Campaign has come to symbolize the success of Chinese health care to the extent that it has become a model for WHO public health strategy. Yet little has been done to understand how or whether it worked on the ground and what difficulties and contradictions emerged in its implementation. Using previously unexplored party archives as well as newly collected oral interviews, this paper moves away from a narrow focus on party politics and policy formulation by examining the reality of health care at the local level and the challenges faced by local authorities and individuals as the campaigns evolved

    Catching the radio flare in CTA 102 I. Light curve analysis

    Full text link
    Context: The blazar CTA 102 (z=1.037) underwent a historical radio outburst in April 2006. This event offered a unique chance to study the physical properties of the jet. Aims: We used multifrequency radio and mm observations to analyze the evolution of the spectral parameters during the flare as a test of the shock-in-jet model under these extreme conditions. Methods: For the analysis of the flare we took into account that the flaring spectrum is superimposed on a quiescent spectrum. We reconstructed the latter from archival data and fitted a synchrotron self-absorbed distribution of emission. The uncertainties of the derived spectral parameters were calculated using Monte Carlo simulations. The spectral evolution is modeled by the shock-in-jet model, and the derived results are discussed in the context of a geometrical model (varying viewing angle) and shock-shock interaction. Results: The evolution of the flare in the turnover frequency-turnover flux density plane shows a double peak structure. The nature of this evolution is dicussed in the frame of shock-in-jet models. We discard the generation of the double peak structure in the turnover frequency-turnover flux density plane purely based on geometrical changes (variation of the Doppler factor). The detailed modeling of the spectral evolution favors a shock-shock interaction as a possible physical mechanism behind the deviations from the standard shock-in-jet model.Comment: 15 pages, 12 figure

    Revealing a Ring-like Cluster Complex in a Tidal Tail of the Starburst Galaxy NGC 2146

    Get PDF
    We report the discovery of a ring-like cluster complex in the starburst galaxy NGC 2146. The Ruby Ring, so named due to its appearance, shows a clear ring-like distribution of star clusters around a central object. It is located in one of the tidal streams which surround the galaxy. NGC 2146 is part of the Snapshot Hubble U-band Cluster Survey (SHUCS). The WFC3/F336W data has added critical information to the available archival Hubble Space Telescope imaging set of NGC 2146, allowing us to determine ages, masses, and extinctions of the clusters in the Ruby Ring. These properties have then been used to investigate the formation of this extraordinary system. We find evidence of a spatial and temporal correlation between the central cluster and the clusters in the ring. The latter are about 4 Myr younger than the central cluster, which has an age of 7 Myr. This result is supported by the H alpha emission which is strongly coincident with the ring, and weaker at the position of the central cluster. From the derived total H alpha luminosity of the system we constrain the star formation rate density to be quite high, e.g. ~ 0.47 Msun/yr/kpc^2. The Ruby Ring is the product of an intense and localised burst of star formation, similar to the extended cluster complexes observed in M51 and the Antennae, but more impressive because is quite isolated. The central cluster contains only 5 % of the total stellar mass in the clusters that are determined within the complex. The ring-like morphology, the age spread, and the mass ratio support a triggering formation scenario for this complex. We discuss the formation of the Ruby Ring in a "collect & collapse" framework. The predictions made by this model agree quite well with the estimated bubble radius and expansion velocity produced by the feedback from the central cluster, making the Ruby Ring an interesting case of triggered star formation.Comment: 11 pages, 7 figures, 1 table; Accepted for publication in MNRA

    The HELLAS2XMM survey. XIII. Multi-component analysis of the spectral energy distribution of obscured AGN

    Get PDF
    We combine near-to-mid-IR Spitzer data with shorter wavelength observations (optical to X-rays) to get insights on the properties of a sample of luminous, obscured Active Galactic Nuclei (AGN). We aim at modeling their broad-band Spectral Energy Distributions (SEDs) in order to estimate the main parameters related to the dusty torus. The sample comprises 16 obscured high-redshift (0.9<z<2.1) xray luminous quasars (L_2-10 ~ 10^44 erg s-1) selected from the HELLAS2XMM survey. The SEDs are described by a multi-component model including a stellar component, an AGN component and a starburst. The majority (~80%) of the sources show moderate optical depth (tau_9.7um<3) and the derived column densities N_H are consistent with the xray inferred values (10^22 <N_H< 3x10^23 cm-2) for most of the objects, confirming that the sources are moderately obscured Compton-thin AGN. Accretion luminosities in the range 5x10^44 < Lbol < 4x10^46 erg s-1 are inferred. We compare model luminosities with those obtained by integrating the observed SED, finding that the latter are lower by a factor of ~2 in the median. The discrepancy can be as high as an order of magnitude for models with high optical depth (tau_9.7um=10). The ratio between the luminosities obtained by the fitting procedure and from the observed SED suggest that, at least for Type~2 AGN, observed bolometric luminosities are likely to underestimate intrinsic ones and the effect is more severe for highly obscured sources. Bolometric corrections from the hard X-ray band are computed and have a median value of k_2-10kev ~ 20. The obscured AGN in our sample are characterized by relatively low Eddington ratios (median lambda_Edd~0.08). On average, they are consistent with the Eddington ratio increasing at increasing bolometric correction (e.g. Vasudevan & Fabiam 2009).Comment: 16 pages, 10 figures. Accepted for pubblication in Astronomy and Astrophysics
    • …
    corecore