975 research outputs found

    research article

    Get PDF
    During embryonic development and tissue homeostasis, reproducible proportions of differentiated cell types are specified from populations of multipotent precursor cells. Molecular mechanisms that enable both robust cell-type proportioning despite variable initial conditions in the precursor cells, and the re-establishment of these proportions upon perturbations in a developing tissue remain to be characterized. Here, we report that the differentiation of robust proportions of epiblast-like and primitive endoderm-like cells in mouse embryonic stem cell cultures emerges at the population level through cell-cell communication via a short-range fibroblast growth factor 4 (FGF4) signal. We characterize the molecular and dynamical properties of the communication mechanism and show how it controls both robust cell-type proportioning from a wide range of experimentally controlled initial conditions, as well as the autonomous re-establishment of these proportions following the isolation of one cell type. The generation and maintenance of reproducible proportions of discrete cell types is a new function for FGF signaling that might operate in a range of developing tissues

    The role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials

    Get PDF
    We assert that the physics underlying the extraordinary light transmission (reflection) in nanostructured materials can be understood from rather general principles based on the formal scattering theory developed in quantum mechanics. The Maxwell equations in passive (dispersive and absorptive) linear media are written in the form of the Schr\"{o}dinger equation to which the quantum mechanical resonant scattering theory (the Lippmann-Schwinger formalism) is applied. It is demonstrated that the existence of long-lived quasistationary eigenstates of the effective Hamiltonian for the Maxwell theory naturally explains the extraordinary transmission properties observed in various nanostructured materials. Such states correspond to quasistationary electromagnetic modes trapped in the scattering structure. Our general approach is also illustrated with an example of the zero-order transmission of the TE-polarized light through a metal-dielectric grating structure. Here a direct on-the-grid solution of the time-dependent Maxwell equations demonstrates the significance of resonances (or trapped modes) for extraordinary light transmissioComment: 14 pages, 6 figures; Discussion in Section 4 expanded; typos corrected; a reference added; Figure 4 revise

    The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model

    Get PDF
    The Finite Element Sea Ice-Ocean Model (FESOM) is the first global ocean general circulation model based on unstructured-mesh methods that has been developed for the purpose of climate research. The advantage of unstructured-mesh models is their flexible multi-resolution modelling functionality. In this study, an overview of the main features of FESOM will be given; based on sensitivity experiments a number of specific parameter choices will be explained; and directions of future developments will be outlined. It is argued that FESOM is sufficiently mature to explore the benefits of multi-resolution climate modelling and that its applications will provide information useful for the advancement of climate modelling on unstructured meshes

    Online-characterization of dielectric barrier discharge plasma actuators for optimized efficiency of aerodynamical flow control applications

    Get PDF
    The impact of fluctuating and transient kinematic and thermodynamic airflow conditions on the performance of dielectric barrier discharge (DBD) plasma actuators is demonstrated. A novel online-characterization and control approach is introduced, revealing the possibility of compensating for impaired discharge performance due to changing airflow scenarios during actuator operation. The goal of controlling the plasma actuator performance online and in situ is achieved and successfully demonstrated

    Bayesian Data-Driven approach enhances synthetic flood loss models

    Get PDF
    Flood loss estimation models are developed using synthetic or empirical approaches. The synthetic approach consists of what-if scenarios developed by experts. The empirical models are based on statistical analysis of empirical loss data. In this study, we propose a novel Bayesian Data-Driven approach to enhance established synthetic models using available empirical data from recorded events. For five case studies in Western Europe, the resulting Bayesian Data-Driven Synthetic (BDDS) model enhances synthetic model predictions by reducing the prediction errors and quantifying the uncertainty and reliability of loss predictions for post-event scenarios and future events. The performance of the BDDS model for a potential future event is improved by integration of empirical data once a new flood event affects the region. The BDDS model, therefore, has high potential for combining established synthetic models with local empirical loss data to provide accurate and reliable flood loss predictions for quantifying future risk

    From climatological to small-scale applications: simulating water isotopologues with ICON-ART-Iso (version 2.3)

    Get PDF
    We present the new isotope-enabled model ICON-ART-Iso. The physics package of the global ICOsahedral Nonhydrostatic (ICON) modeling framework has been extended to simulate passive moisture tracers and the stable isotopologues HDO and H182O. The extension builds on the infrastructure provided by ICON-ART, which allows for high flexibility with respect to the number of related water tracers that are simulated. The physics of isotopologue fractionation follow the model COSMOiso. We first present a detailed description of the physics of fractionation that have been implemented in the model. The model is then evaluated on a range of temporal scales by comparing with measurements of precipitation and vapor. A multi-annual simulation is compared to observations of the isotopologues in precipitation taken from the station network GNIP (Global Network for Isotopes in Precipitation). ICON-ART-Iso is able to simulate the main features of the seasonal cycles in δD and δ18O as observed at the GNIP stations. In a comparison with IASI satellite retrievals, the seasonal and daily cycles in the isotopologue content of vapor are examined for different regions in the free troposphere. On a small spatial and temporal scale, ICON-ART-Iso is used to simulate the period of two flights of the IAGOS-CARIBIC aircraft in September 2010, which sampled air in the tropopause region influenced by Hurricane Igor. The general features of this sample as well as those of all tropical data available from IAGOS-CARIBIC are captured by the model. The study demonstrates that ICON-ART-Iso is a flexible tool to analyze the water cycle of ICON. It is capable of simulating tagged water as well as the isotopologues HDO and H182

    Does ohmic heating influence the flow field in thin-layer electrodeposition?

    Get PDF
    In thin-layer electrodeposition the dissipated electrical energy leads to a substantial heating of the ion solution. We measured the resulting temperature field by means of an infrared camera. The properties of the temperature field correspond closely with the development of the concentration field. In particular we find, that the thermal gradients at the electrodes act like a weak additional driving force to the convection rolls driven by concentration gradients.Comment: minor changes: correct estimation of concentration at the anode, added Journal-re

    Dilatancy transition in a granular model

    Full text link
    We introduce a model of granular matter and use a stress ensemble to analyze shearing. Monte Carlo simulation shows the model to exhibit a second order phase transition, associated with the onset of dilatancy.Comment: Future versions can be obtained from: http://www.ma.utexas.edu/users/radin/papers/shear2.pd

    Evolution of dopant-induced helium nanoplasmas

    Get PDF
    Two-component nanoplasmas generated by strong-field ionization of doped helium nanodroplets are studied in a pump-probe experiment using few-cycle laser pulses in combination with molecular dynamics simulations. High yields of helium ions and a pronounced, droplet size-dependent resonance structure in the pump-probe transients reveal the evolution of the dopant-induced helium nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner ionization by the pump pulse and resonant heating by the probe pulse which controls the final charge states detected via the frustration of electron-ion recombination

    Time-Resolved Measurement of Interatomic Coulombic Decay in Ne_2

    Get PDF
    The lifetime of interatomic Coulombic decay (ICD) [L. S. Cederbaum et al., Phys. Rev. Lett. 79, 4778 (1997)] in Ne_2 is determined via an extreme ultraviolet pump-probe experiment at the Free-Electron Laser in Hamburg. The pump pulse creates a 2s inner-shell vacancy in one of the two Ne atoms, whereupon the ionized dimer undergoes ICD resulting in a repulsive Ne^{+}(2p^{-1}) - Ne^{+}(2p^{-1}) state, which is probed with a second pulse, removing a further electron. The yield of coincident Ne^{+} - Ne^{2+} pairs is recorded as a function of the pump-probe delay, allowing us to deduce the ICD lifetime of the Ne_{2}^{+}(2s^{-1}) state to be (150 +/- 50) fs in agreement with quantum calculations.Comment: 5 pages, 3 figures, accepted by PRL on July 11th, 201
    corecore