173 research outputs found

    A constant and similar assembly defect of mitochondrial respiratory chain complex I allows rapid identification of NDUFS4 mutations in patients with Leigh syndrome

    Get PDF
    AbstractIsolated complex I deficiency is a frequent cause of respiratory chain defects in childhood. In this study, we report our systematic approach with blue native PAGE (BN-PAGE) to study mitochondrial respiratory chain assembly in skin fibroblasts from patients with Leigh syndrome and CI deficiency. We describe five new NDUFS4 patients with a similar and constant abnormal BN-PAGE profile and present a meta-analysis of the literature. All NDUFS4 mutations that have been tested with BN-PAGE result in a constant and similar abnormal assembly profile with a complete loss of the fully assembled complex I usually due to a truncated protein and the loss of its canonical cAMP dependent protein kinase phosphorylation consensus site. We also report the association of abnormal brain MRI images with this characteristic BN-PAGE profile as the hallmarks of NDUFS4 mutations and the first founder NDUFS4 mutations in the North-African population

    An open-access long oligonucleotide microarray resource for analysis of the human and mouse transcriptomes

    Get PDF
    Two collections of oligonucleotides have been designed for preparing pangenomic human and mouse microarrays. A total of 148 993 and 121 703 oligonucleotides were designed against human and mouse transcripts. Quality scores were created in order to select 25 342 human and 24 109 mouse oligonucleotides. They correspond to: (i) a BLAST-specificity score; (ii) the number of expressed sequence tags matching each probe; (iii) the distance to the 3′ end of the target mRNA. Scores were also used to compare in silico the two microarrays with commercial microarrays. The sets described here, called RNG/MRC collections, appear at least as specific and sensitive as those from the commercial platforms. The RNG/MRC collections have now been used by an Anglo-French consortium to distribute more than 3500 microarrays to the academic community. Ad hoc identification of tissue-specific transcripts and a ∼80% correlation with hybridizations performed on Affymetrix GeneChip™ suggest that the RNG/MRC microarrays perform well. This work provides a comprehensive open resource for investigators working on human and mouse transcriptomes, as well as a generic method to generate new microarray collections in other organisms. All information related to these probes, as well as additional information about commercial microarrays have been stored in a freely-accessible database called MEDIANTE

    MINPP1 prevents intracellular accumulation of the chelator inositol hexakisphosphate and is mutated in Pontocerebellar Hypoplasia

    Get PDF
    Inositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1−/− induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis

    Submicroscopic Deletions at 13q32.1 Cause Congenital Microcoria.

    Get PDF
    International audienceCongenital microcoria (MCOR) is a rare autosomal-dominant disorder characterized by inability of the iris to dilate owing to absence of dilator pupillae muscle. So far, a dozen MCOR-affected families have been reported worldwide. By using whole-genome oligonucleotide array CGH, we have identified deletions at 13q32.1 segregating with MCOR in six families originating from France, Japan, and Mexico. Breakpoint sequence analyses showed nonrecurrent deletions in 5/6 families. The deletions varied from 35 kbp to 80 kbp in size, but invariably encompassed or interrupted only two genes: TGDS encoding the TDP-glucose 4,6-dehydratase and GPR180 encoding the G protein-coupled receptor 180, also known as intimal thickness-related receptor (ITR). Unlike TGDS which has no known function in muscle cells, GPR180 is involved in the regulation of smooth muscle cell growth. The identification of a null GPR180 mutation segregating over two generations with iridocorneal angle dysgenesis, which can be regarded as a MCOR endophenotype, is consistent with the view that deletions of this gene, with or without the loss of elements regulating the expression of neighboring genes, are the cause of MCOR

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    Prolactin Receptor Signaling Is Essential for Perinatal Brown Adipocyte Function: A Role for Insulin-like Growth Factor-2

    Get PDF
    BACKGROUND: The lactogenic hormones prolactin (PRL) and placental lactogens (PL) play central roles in reproduction and mammary development. Their actions are mediated via binding to PRL receptor (PRLR), highly expressed in brown adipose tissue (BAT), yet their impact on adipocyte function and metabolism remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: PRLR knockout (KO) newborn mice were phenotypically characterized in terms of thermoregulation and their BAT differentiation assayed for gene expression studies. Derived brown preadipocyte cell lines were established to evaluate the molecular mechanisms involved in PRL signaling on BAT function. Here, we report that newborn mice lacking PRLR have hypotrophic BAT depots that express low levels of adipocyte nuclear receptor PPARgamma2, its coactivator PGC-1alpha, uncoupling protein 1 (UCP1) and the beta3 adrenoceptor, reducing mouse viability during cold challenge. Immortalized PRLR KO preadipocytes fail to undergo differentiation into mature adipocytes, a defect reversed by reintroduction of PRLR. That the effects of the lactogens in BAT are at least partly mediated by Insulin-like Growth Factor-2 (IGF-2) is supported by: i) a striking reduction in BAT IGF-2 expression in PRLR KO mice and in PRLR-deficient preadipocytes; ii) induction of cellular IGF-2 expression by PRL through JAK2/STAT5 pathway activation; and iii) reversal of defective differentiation in PRLR KO cells by exogenous IGF-2. CONCLUSIONS: Our findings demonstrate that the lactogens act in concert with IGF-2 to control brown adipocyte differentiation and growth. Given the prominent role of brown adipose tissue during the perinatal period, our results identified prolactin receptor signaling as a major player and a potential therapeutic target in protecting newborn mammals against hypothermia

    Increased Immune Complexes of Hypocretin Autoantibodies in Narcolepsy

    Get PDF
    International audienceBACKGROUND: Hypocretin peptides participate in the regulation of sleep-wake cycle while deficiency in hypocretin signaling and loss of hypocretin neurons are causative for narcolepsy-cataplexy. However, the mechanism responsible for alteration of the hypocretin system in narcolepsy-cataplexy and its relevance to other central hypersomnias remain unknown. Here we studied whether central hypersomnias can be associated with autoantibodies reacting with hypocretin-1 peptide present as immune complexes. METHODOLOGY: Serum levels of free and dissociated (total) autoantibodies reacting with hypocretin-1 peptide were measured by enzyme-linked immunosorbent assay and analyzed with regard to clinical parameters in 82 subjects with narcolepsy-cataplexy, narcolepsy without cataplexy or idiopathic hypersomnia and were compared to 25 healthy controls. PRINCIPAL FINDINGS: Serum levels of total but not free IgG autoantibodies against hypocretin-1 were increased in narcolepsy-cataplexy. Increased levels of complexed IgG autoantibodies against hypocretin-1 were found in all patients groups with a further increase in narcolepsy-cataplexy. Levels of total IgM hypocretin-1 autoantibodies were also elevated in all groups of patients. Increased levels of anti-idiotypic IgM autoantibodies reacting with hypocretin-1 IgG autoantibodies affinity purified from sera of subjects with narcolepsy-cataplexy were found in all three groups of patients. Disease duration correlated negatively with serum levels of hypocretin-1 IgG and IgM autoantibodies and with anti-idiotypic IgM autoantibodies. CONCLUSION: Central hypersomnias and particularly narcolepsy-cataplexy are characterized by higher serum levels of autoantibodies directed against hypocretin-1 which are present as immune complexes most likely with anti-idiotypic autoantibodies suggesting their relevance to the mechanism of sleep-wake cycle regulation

    Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies

    Get PDF
    Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both temporally and spatially. Genetic defects in several spliceosome components have been linked to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here we report that defects in spliceosome-associated protein CWC27 are associated with a spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms. By whole-exome sequencing, recessive protein-truncating mutations in CWC27 were found in seven unrelated families that show a range of clinical phenotypes, including retinal degeneration, brachydactyly, craniofacial abnormalities, short stature, and neurological defects. Remarkably, variable expressivity of the human phenotype can be recapitulated in Cwc27 mutant mouse models, with significant embryonic lethality and severe phenotypes in the complete knockout mice while mice with a partial loss-of-function allele mimic the isolated retinal degeneration phenotype. Our study describes a retinal dystrophy-related phenotype spectrum as well as its genetic etiology and highlights the complexity of the spliceosomal gene network

    Expression of estrogen receptors in the hypothalamo-pituitary-ovarian axis in middle-aged rats after re-instatement of estrus cyclicity

    Get PDF
    During reproductive aging female rats enter an anovulatory state of persistent estrus (PE). In an animal model of re-instatement of estrus cyclicity in middle-aged PE rats we injected the animals with progesterone (0.5 mg progesterone/kg body weight) at 12:00 for 4 days whereas control animals received corn oil injections. After the last injection animals were analyzed at 13:00 and 17:00. Young regular cycling rats served as positive controls and were assessed at 13:00 and 17:00 on proestrus. Progesterone treatment of middle-aged PE rats led to occurrence of luteinizing hormone (LH), follicle stimulating hormone (FSH), and prolactin surges in a subset of animals that were denoted as responders. Responding middle-aged rats displayed a reduction of ER-β mRNA in the preoptic area which was similar to the effect in young rats. Within the mediobasal hypothalamus, only young rats showed a decline of ER-α mRNA expression. A decrease of ER-α mRNA levels in the pituitary was observed in progesterone-responsive rats and in young animals. ER-β mRNA expression was reduced in young regular cycling rats. ER-β mRNA levels in the ovary were reduced following progesterone treatment in PE rats and in young rats. Taken together our data show that cyclic administration of progesterone reinstates ovulatory cycles in intact aging females which have already lost their ability to display spontaneous cyclicity. This treatment leads to the occurrence of preovulatory LH, FSH and prolactin surges which are accompanied by differential modulation of ERs in the hypothalamus, the pituitary and the ovary
    corecore