223 research outputs found

    Mapping the Μ⊙\nu_\odot Secular Resonance for Retrograde Irregular Satellites

    Get PDF
    Constructing dynamical maps from the filtered output of numerical integrations, we analyze the structure of the Μ⊙\nu_\odot secular resonance for fictitious irregular satellites in retrograde orbits. This commensurability is associated to the secular angle Ξ=ϖ−ϖ⊙\theta = \varpi - \varpi_\odot, where ϖ\varpi is the longitude of pericenter of the satellite and ϖ⊙\varpi_\odot corresponds to the (fixed) planetocentric orbit of the Sun. Our study is performed in the restricted three-body problem, where the satellites are considered as massless particles around a massive planet and perturbed by the Sun. Depending on the initial conditions, the resonance presents a diversity of possible resonant modes, including librations of Ξ\theta around zero (as found for Sinope and Pasiphae) or 180 degrees, as well as asymmetric librations (e.g. Narvi). Symmetric modes are present in all giant planets, although each regime appears restricted to certain values of the satellite inclination. Asymmetric solutions, on the other hand, seem absent around Neptune due to its almost circular heliocentric orbit. Simulating the effects of a smooth orbital migration on the satellite, we find that the resonance lock is preserved as long as the induced change in semimajor axis is much slower compared to the period of the resonant angle (adiabatic limit). However, the librational mode may vary during the process, switching between symmetric and asymmetric oscillations. Finally, we present a simple scaling transformation that allows to estimate the resonant structure around any giant planet from the results calculated around a single primary mass.Comment: 11 pages, 13 figure

    Stellar Scattering and the Formation of Hot-Jupiters in Binary Systems

    Full text link
    Hot Jupiters (HJs) are usually defined as giant Jovian-size planets with orbital periods P≀10P \le 10 days. Although they lie close to the star, several have finite eccentricities and significant misalignment angle with respect to the stellar equator. Two mechanisms have been proposed to explain the excited and misaligned sub-population of HJs: Lidov-Kozai migration and planet-planet scattering. Although both are based on completely different dynamical phenomena, they appear to be equally effective in generating hot planets. Nevertheless, there has been no detailed analysis comparing the predictions of both mechanisms. In this paper we present numerical simulations of Lidov-Kozai trapping of single planets in compact binary systems. Both the planet and the binary are initially placed in coplanar orbits, although the inclination of the impactor is assumed random. After the passage of the third star, we follow the orbital and spin evolution of the planet using analytical models based on the octupole expansion of the secular Hamiltonian. The present work aims at the comparison of the two mechanisms, as an explanation for the excited and inclined HJs in binary systems. We compare the results obtained through this paper with results in Beaug\'e & Nesvorn\'y 2012, where the authors analyze how the planet-planet scattering mechanisms works. Several of the orbital characteristics of the simulated HJs are caused by tidal trapping from quasi-parabolic orbits, independent of the driving mechanism. These include both the 3-day pile-up and the distribution in the eccentricity vs semimajor axis plane. However, the distribution of the inclinations shows significant differences. While Lidov-Kozai trapping favors a more random distribution, planet-planet scattering shows a large portion of bodies nearly aligned with the equator of the central star.Comment: 12 pages, 6 figures. Accepted for publication at IJAB (internation journal of astrobiology

    Capture Probability in the 3:1 Mean Motion Resonance with Jupiter

    Full text link
    We study the capture and crossing probabilities into the 3:1 mean motion resonance with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under the action of the Yarkovsky effect. We use an algebraic mapping of the averaged planar restricted three-body problem based on the symplectic mapping of Hadjidemetriou (1993), adding the secular variations of the orbit of Jupiter and non-symplectic terms to simulate the migration. We found that, for fast migration rates, the captures occur at discrete windows of initial eccentricities whose specific locations depend on the initial resonant angles, indicating that the capture phenomenon is not probabilistic. For slow migration rates, these windows become narrower and start to accumulate at low eccentricities, generating a region of mutual overlap where the capture probability tends to 100%, in agreement with the theoretical predictions for the adiabatic regime. Our simulations allow to predict the capture probabilities in both the adiabatic and non-adiabatic cases, in good agreement with results of Gomes (1995) and Quillen (2006). We apply our model to the case of the Vesta asteroid family in the same context as Roig et al. (2008), and found results indicating that the high capture probability of Vesta family members into the 3:1 mean motion resonance is basically governed by the eccentricity of Jupiter and its secular variations

    Chaotic Diffusion in the Gliese-876 Planetary System

    Get PDF
    Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disk, and a natural consequence of irregular motion. In this paper we show that resonant multi-planetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over timescales comparable to their age.Using the GJ-876 system as an example, we analyze the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincar\'e maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behavior of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.Comment: 13 pages, 7 figures, 2 tables. Accepted for publication in MNRA

    The Resonance Overlap and Hill Stability Criteria Revisited

    Get PDF
    We review the orbital stability of the planar circular restricted three-body problem, in the case of massless particles initially located between both massive bodies. We present new estimates of the resonance overlap criterion and the Hill stability limit, and compare their predictions with detailed dynamical maps constructed with N-body simulations. We show that the boundary between (Hill) stable and unstable orbits is not smooth but characterized by a rich structure generated by the superposition of different mean-motion resonances which does not allow for a simple global expression for stability. We propose that, for a given perturbing mass m1m_1 and initial eccentricity ee, there are actually two critical values of the semimajor axis. All values aaunstablea a_{\rm unstable} are unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is a function of the eccentricity. The second limit is virtually insensitive to the initial eccentricity, and closely resembles a new resonance overlap condition (for circular orbits) developed in terms of the intersection between first and second-order mean-motion resonances.Comment: 33 pages, 14 figures, accepte

    MAMA: An Algebraic Map for the Secular Dynamics of Planetesimals in Tight Binary Systems

    Get PDF
    We present an algebraic map (MAMA) for the dynamical and collisional evolution of a planetesimal swarm orbiting the main star of a tight binary system (TBS). The orbital evolution of each planetesimal is dictated by the secular perturbations of the secondary star and gas drag due to interactions with a protoplanetary disk. The gas disk is assumed eccentric with a constant precession rate. Gravitational interactions between the planetesimals are ignored. All bodies are assumed coplanar. A comparison with full N-body simulations shows that the map is of the order of 100 times faster, while preserving all the main characteristics of the full system. In a second part of the work, we apply MAMA to the \gamma-Cephei, searching for friendly scenarios that may explain the formation of the giant planet detected in this system. For low-mass protoplanetary disks, we find that a low-eccentricity static disk aligned with the binary yields impact velocities between planetesimals below the disruption threshold. All other scenarios appear hostile to planetary formation

    Secular dynamics of planetesimals in tight binary systems: Application to Gamma-Cephei

    Full text link
    The secular dynamics of small planetesimals in tight binary systems play a fundamental role in establishing the possibility of accretional collisions in such extreme cases. The most important secular parameters are the forced eccentricity and secular frequency, which depend on the initial conditions of the particles, as well as on the mass and orbital parameters of the secondary star. We construct a second-order theory (with respect to the masses) for the planar secular motion of small planetasimals and deduce new expressions for the forced eccentricity and secular frequency. We also reanalyze the radial velocity data available for Gamma-Cephei and present a series of orbital solutions leading to residuals compatible with the best fits. Finally, we discuss how different orbital configurations for Gamma-Cephei may affect the dynamics of small bodies in circunmstellar motion. For Gamma-Cephei, we find that the classical first-order expressions for the secular frequency and forced eccentricity lead to large inaccuracies around 50 % for semimajor axes larger than one tenth the orbital separation between the stellar components. Low eccentricities and/or masses reduce the importance of the second-order terms. The dynamics of small planetesimals only show a weak dependence with the orbital fits of the stellar components, and the same result is found including the effects of a nonlinear gas drag. Thus, the possibility of planetary formation in this binary system largely appears insensitive to the orbital fits adopted for the stellar components, and any future alterations in the system parameters (due to new observations) should not change this picture. Finally, we show that planetesimals migrating because of gas drag may be trapped in mean-motion resonances with the binary, even though the migration is divergent.Comment: 11 pages, 9 figure

    Tidal Evolution of Close-in Exoplanets and Host Stars

    Full text link
    The evolution of exoplanetary systems with a close-in planet is ruled by the tides mutually raised on the two bodies and by the magnetic braking of the host star. This paper deals with consequences of this evolution and some features that can be observed in the distribution of the systems two main periods: the orbital periods and the stars rotational periods. The results of the simulations are compared to plots showing both periods as determined from the light curves of a large number of Kepler objects of interest. These plots show important irregularities as a dearth of systems in some regions and accumulations of hot Jupiters in others. It is shown that the accumulation of short-period hot Jupiters around stars with rotation periods close to 25 days results from the evolution of the systems under the joint action of tides and braking, and requires a relaxation factor for solar-type stars of around 10 s−110 \, s^{-1}.Comment: Accepted for publication in MNRA

    On the dynamics of Extrasolar Planetary Systems under dissipation. Migration of planets

    Full text link
    We study the dynamics of planetary systems with two planets moving in the same plane, when frictional forces act on the two planets, in addition to the gravitational forces. The model of the general three-body problem is used. Different laws of friction are considered. The topology of the phase space is essential in understanding the evolution of the system. The topology is determined by the families of stable and unstable periodic orbits, both symmetric and non symmetric. It is along the stable families, or close to them, that the planets migrate when dissipative forces act. At the critical points where the stability along the family changes, there is a bifurcation of a new family of stable periodic orbits and the migration process changes route and follows the new stable family up to large eccentricities or to a chaotic region. We consider both resonant and non resonant planetary systems. The 2/1, 3/1 and 3/2 resonances are studied. The migration to larger or smaller eccentricities depends on the particular law of friction. Also, in some cases the semimajor axes increase and in other cases they are stabilized. For particular laws of friction and for special values of the parameters of the frictional forces, it is possible to have partially stationary solutions, where the eccentricities and the semimajor axes are fixed.Comment: Accepted in Celestial Mechanics and Dynamical Astronom

    Origin and Detectability of coorbital planets from radial velocity data

    Get PDF
    We analyze the possibilities of detection of hypothetical exoplanets in coorbital motion from synthetic radial velocity (RV) signals, taking into account different types of stable planar configurations, orbital eccentricities and mass ratios. For each nominal solution corresponding to small-amplitude oscillations around the periodic solution, we generate a series of synthetic RV curves mimicking the stellar motion around the barycenter of the system. We then fit the data sets obtained assuming three possible different orbital architectures: (a) two planets in coorbital motion, (b) two planets in a 2/1 mean-motion resonance, and (c) a single planet. We compare the resulting residuals and the estimated orbital parameters. For synthetic data sets covering only a few orbital periods, we find that the discrete radial velocity signal generated by a coorbital configuration could be easily confused with other configurations/systems, and in many cases the best orbital fit corresponds to either a single planet or two bodies in a 2/1 resonance. However, most of the incorrect identifications are associated to dynamically unstable solutions. We also compare the orbital parameters obtained with two different fitting strategies: a simultaneous fit of two planets and a nested multi-Keplerian model. We find that the nested models can yield incorrect orbital configurations (sometimes close to fictitious mean-motion resonances) that are nevertheless dynamically stable and with orbital eccentricities lower than the correct nominal solutions. Finally, we discuss plausible mechanisms for the formation of coorbital configurations, by the interaction between two giant planets and an inner cavity in the gas disk. For equal mass planets, both Lagrangian and anti-Lagrangian configurations can be obtained from same initial condition depending on final time of integration.Comment: 14 pages, 16 figures.2012. MNRAS, 421, 35
    • 

    corecore