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Origin and detectability of co-orbital planets from radial velocity data
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ABSTRACT
We analyse the possibilities of detection of hypothetical exoplanets in co-orbital motion
from synthetic radial velocity (RV) signals, taking into account different types of stable planar
configurations, orbital eccentricities and mass ratios. For each nominal solution corresponding
to small-amplitude oscillations around the periodic solution, we generate a series of synthetic
RV curves mimicking the stellar motion around the barycentre of the system. We then fit the
data sets obtained assuming three possible different orbital architectures: (a) two planets in
co-orbital motion, (b) two planets in a 2/1 mean-motion resonance (MMR) and (c) a single
planet. We compare the resulting residuals and the estimated orbital parameters.

For synthetic data sets covering only a few orbital periods, we find that the discrete RV
signal generated by a co-orbital configuration could be easily confused with other configura-
tions/systems, and in many cases the best orbital fit corresponds to either a single planet or
two bodies in a 2/1 resonance. However, most of the incorrect identifications are associated
with dynamically unstable solutions.

We also compare the orbital parameters obtained with two different fitting strategies: a
simultaneous fit of two planets and a nested multi-Keplerian model. We find that, even for
data sets covering over 10 orbital periods, the nested models can yield incorrect orbital
configurations (sometimes close to fictitious MMRs) that are nevertheless dynamically stable
and with orbital eccentricities lower than the correct nominal solutions.

Finally, we discuss plausible mechanisms for the formation of co-orbital configurations, by
the interaction between two giant planets and an inner cavity in the gas disc. For equal-mass
planets, both Lagrangian and anti-Lagrangian configurations can be obtained from same initial
condition depending on final time of integration.

Key words: techniques: radial velocities – celestial mechanics – planets and satellites: for-
mation.

1 IN T RO D U C T I O N

The possible existence of exoplanets in co-orbital motion has fas-
cinated planetary scientists for several years. Since the diversity
of exoplanetary configurations continues to surprise us, even more
than 15 years after the discovery of Peg51b, it seems almost natural
to expect Trojan planets to exist somewhere and the announce-
ment of their discovery to be only a matter of time. Probably the
first detailed analysis of hypothetical co-orbital planets is due to
Laughlin & Chambers (2002). They studied three types of co-
orbital configurations: tadpole orbits (around L4 and L5 equilat-
eral points), horse-shoe configurations and ‘eccentric resonances’.
They proposed to distinguish between co-orbital and single-planet

�E-mail: cristian@ua.pt

fits from radial velocity (RV) data by observing residuals from long-
term observations (more than 10 orbital periods), because the co-
orbital configurations have large mutual interactions due to resonant
motion.

For systems with more than one planet, it is well known that
the existence of resonant motion may be possible evidence of a
past large-scale planetary migration due to interactions with the
gaseous disc. Although their importance is unquestionable, it is still
intriguing why some commensurabilities are very populated [e.g.
2/1 mean-motion resonance (MMR)] and others are currently empty
(particularly the 1/1 MMR).

Lagrange (1873) discovered stable solutions for three massive
bodies such that at all times their relative positions are located in
the vertices of an equilateral triangle of variable size (L4 and L5

solutions). Linear stability analyses traditionally focused on the re-
stricted three-body problem (where one of the masses vanishes; e.g.
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Namouni, Christou & Murray 1999; Morais 2001 and references
therein). Recently, Nauenberg (2002) numerically investigated the
dynamical stability of general three-body problem as a function of
the eccentricity of the orbits and the Routh mass parameter. The
resonant solutions were found stable when (m1 + m2)/M� � 0.038
and up to eccentricities ∼0.6. The existence of such periodic orbits
in the general three-body problem was also derived, for example,
in Siegel & Moser (1971) and Laughlin & Chambers (2002). As
mentioned in Laughlin & Chambers (2002), horse-shoe orbits are
stable for planetary masses up to ∼0.4 MJup, and despite the first
impression, Keplerian fits are good enough to reveal their RV signa-
ture with only four orbital periods. We also note that those type of
orbits, named ‘eccentric resonances’, are simply an effect of angular
momentum conservation in a coplanar three-body problem, which
predicts that when the eccentricity of one planet is maximum the
other eccentricity reach a minimum and they have high amplitude
of oscillation of resonant angles.

More recently, Hadjidemetriou, Psychoyos & Voyatzis (2009)
studied the properties of motion close to a periodic orbit by com-
puting the Poincaré map on a surface of section. They constructed
the symmetric families of stable and unstable motion describing one
previous unknown symmetric configuration in the general problem,
the quasi-satellite (QS) solution.

In a previous work (Giuppone et al. 2010), we studied the sta-
bility regions and families of periodic orbits of two planets in the
vicinity of a 1/1 MMR, using numerical integrations and developing
a semi-analytical method. We considered different ratios of plan-
etary masses and orbital eccentricities, although we assumed that
both planets share the same orbital plane (coplanar motion). As a
result, we identified two separate regions of stability, symmetric and
asymmetric types of motion easily described with the behaviour of
resonant angles (σ , �� ) = (λ2 − λ1, � 2 − � 1), summarize1 as
follows.

(i) QS region. It corresponds to oscillations around a fixed point
located at (σ , �� ) = (0◦, 180◦) independent of mass ratio. Al-
though not present for quasi-circular trajectories, they fill a consid-
erable portion of the phase space in the case of moderate to high
eccentricities.

(ii) Lagrangian region. Two distinct types of asymmetric peri-
odic orbits exist in which both σ and �� oscillate around val-
ues different from 0◦ or 180◦. The first is the classical equilateral
Lagrange solution associated with local maxima of the averaged
Hamiltonian function. Independently of the mass ratio m2/m1 and
their eccentricities, these solutions are always located at (σ , �� ) =
(±60◦, ±60◦). However, the size of the stable domain decreases
rapidly for increasing eccentricities, being practically negligible for
ei > 0.7.

The second type of asymmetric solutions corresponds to local
minimum of the averaged Hamiltonian function. They were named
anti-Lagrangian points (AL4 and AL5) and, for low eccentricities,
are located at (σ , �� ) = (±60◦, ∓ 120◦). Each is connected to the
classical Li solution through the σ family of periodic orbits in the
averaged system (a family of solutions where the angle σ has zero
amplitude of oscillation; e.g. Michtchenko, Beaugé & Ferraz-Mello
2008a,b). Contrary to the classical equilateral Lagrange solution,
their location in the plane (σ , �� ) varies with the planetary mass

1 See figs 2 and 5 from Giuppone et al. (2010) in order to easily identify
these kind of co-orbital motions in same plane of astrocentric parameters.
We centre this work on L4 and AL4 configurations since, due to symmetry
consideration, they give same results as L5 and AL5, respectively.

ratio and eccentricities. Although their stability domain also shrinks
for increasing values of ei, they do so at a slower rate than the classi-
cal Lagrangian solutions, and are still appreciable for eccentricities
as high as ∼0.7. An empirical relation exists for eccentricities be-
low 0.6 (e.g. Giuppone et al. 2010; Hadjidemetriou & Voyatzis
2011):

e1 �
(

m2

m1

)
e2. (1)

In this paper, we address the question of extrasolar Trojans, both
from its detectability and possible origin. In a recent work, Anglada-
Escudé, López-Morales & Chambers (2010) showed that two plan-
ets in a 2/1 MMR resonance could mimic a single planet in a more
eccentric orbit. We wonder whether the opposite could also occur,
and if two planets in a co-orbital configuration could give similar
RV signals as other dynamical systems including the 2/1 resonance.
In Section 2, we review the RV signal generated by such systems
and how they can be easily mistaken with the signal generated by a
single planet. In the following section, we select representative con-
figurations and generate synthetics data sets for several mass ratio.
Section 4 analyses the dynamical stability of the different possible
configurations, while the dispersion of the best-fitting parameters is
discussed in Section 5. A comparison between two different strate-
gies for planetary detection (two-planet fit versus nested Keplerian
fits) is presented in Section 6. Finally, a possible formation mech-
anism of extrasolar co-orbitals is discussed in Section 7, where we
present a series of numerical simulations (both hydro and N-body)
of two-planet systems immersed in a gaseous disc with an inner
gap. Conclusions close the paper in Section 8.

2 K E P L E R I A N R A D I A L V E L O C I T Y
E QUAT I O N S

First we need to understand some aspects involved in the RV signal
produced by two planets in co-orbital motions, assuming unper-
turbed Keplerian motion. Consider two planets with masses m1 and
m2 in coplanar orbits around a star with mass m0 = M�. Let ai

denote the semimajor axes, ei the eccentricities, λi the mean longi-
tudes, � i the longitudes of pericentre, Mi the mean anomaly and
f i the true anomalies. All orbital elements are assumed astrocentric
and osculating.

The suitable angular variables for co-orbital motion are defined
by σ = λ2 − λ1 and �� = � 2 − � 1. Disregarding mutual
interactions between the planets, the RV of the star is the sum of
the individual Keplerian contributions (e.g. Beaugé, Ferraz-Mello
& Michtchenko 2007):

Vr = K1[cos (f1 + �1) + e1 cos �1]

+ K2[cos (f2 + �2) + e2 cos �2],

where Ki = mi sin Ii

mi + m0

niai√
1 − e2

i

,
(2)

Ii being the orbital inclination with respect to the sky. Even though
the RV of a star perturbed by the two planets near the periodic orbit
(i.e. QS, Li and ALi) is not given by a single periodic signal, we
may ask under what circumstances this signal could be mimicked
by a single planet orbiting the star or even two planets in other
configurations.

To address this question, we can use the same approach as that
of Anglada-Escude et al. (2010), rearranging the Keplerian con-
tributions from each planet. Using the expansions to first order in
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Figure 1. Schematic configuration for co-orbitals and corresponding sin-
gle planet that mimics their RV signal. The position of single planet is
determined by equations (9) and (10).

eccentricities for the true anomaly f (see e.g. Murray & Dermott
1999),

sin(fi) = sin(Mi) + ei sin(2Mi),

cos(fi) = cos(Mi) + ei cos(2Mi) − ei, (3)

and expanding

cos (fi + �i) = cos (�i + Mi) + ei cos (2Mi + �i) − ei cos �i,
(4)

recalling that λi = � i + Mi and substituting (4) into (2), we finally
obtain

Vr � K1[cos λ1 + e1 cos (2λ1 − �1)]

+K2[cos λ2 + e2 cos (2λ2 − �2)]. (5)
Now, we suppose that the previous signal can be mimicked by

a single planet. Imagine that its mean longitude λ is located some-
where between the position of co-orbitals. According to Fig. 1, we
can rewrite the mean longitudes and the longitudes of pericentres
as

λ1 = λ − α1,

λ2 = λ + α2, where α1 + α2 = σ,

�1 = � − β1,

�2 = � + β2, where β1 + β2 = ��. (6)

By definition of periodic orbit, σ̇ = 0 and ��̇ = 0, giving
constant values for α1, α2, β1 and β2. We can then substitute equa-
tions (6) into equation (5), and regroup terms to rewrite

Vr = (K1 cos α1 + K2 cos α2)︸ ︷︷ ︸
≡K

[cos λ + e cos (2λ − � )], (7)

e ≡ K1e1 cos(2α1 − β1) + K2e2 cos(2α2 − β2)

K1 cos α1 + K2 cos α2
, (8)

where the conditions

K1sin α1 = K2 sin α2, (9)

K1e1sin (2α1 − β1) = K2e2 sin (2α2 − β2) (10)

eliminate the additional periodic term and also define the position
of fictitious single planet, giving

tan α1 = K2

K1

sin σ(
1 + K2

K1
cos σ

) ,

tan (2α1 − β1) = K2e2

K1e1

sin (2σ − �� )[
1 + K2e2

K1e1
cos (2σ − �� )

] . (11)

It can easily be seen that when both planets have the same mass
α1 = α2 and β1 = β2, from which the fictitious single planet would
have λ = λ1+λ2

2 and � = �1+�2
2 . In this case, e1 = e2 and the RV

signal arising from the single planet would be

K = 2K1 cos
σ

2
, (12)

e = e1
cos (σ − ��

2 )

cos σ
2

. (13)

In the opposite limit, when m2 	 m1, both α2, β2 → 0 and
the single planet is located near the position of the massive planet.
Recall that for co-orbital configuration with eccentricities up to ei <

0.6, the stable zero-amplitude solutions satisfy equation (1), except
for the L4 configuration that always lies in the line segment e1 = e2.

For other mass ratios, Fig. 2 shows the equilibrium values of
α1, β1 and the corresponding signal K amplitude and eccentricity
e (the eccentricity is shown in units of e1). Note that the value of
e only varies when the single planet mimics co-orbitals in AL4.
It is interesting to remark that QS configuration could easily be
mimicked by a single planet of circular orbit.

3 O RBI TAL FI TS AND SYNTHETI C
R A D I A L V E L O C I T Y

First we review the differences in radial velocities signals using the
Keplerian approximation (2) and N-body integrator, in order to dis-
tinguish how important are the mutual interactions and the feasibil-
ity of being detected. The top frame of Fig. 3 shows three synthetic

Figure 2. Parameters for a single planet to mimicking the RV signal of two
co-orbitals with mass ratio m2/m1. The colour code is used to distinguish
configurations: QS in black, L4 in red and AL4 in green. Top: values of α1

are shown in continuous lines, while β1 is plotted in dashed lines. Middle:
associated value of K in units of K1. Bottom: equivalent eccentricity of single
planet for each configuration in units of the eccentricity of the co-orbital
planet with signal K1.
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Figure 3. Top: synthetic RV curves generated with an N-body integrator
for three different orbital configurations, specified in the top of the graph for
the first conditions in Table 1. Bottom: difference between radial velocities
calculated from the N-body integration and those generated with Keplerian
model. Although the difference increases with time, it remains below 4 m s−1

even after four orbital periods.

Table 1. Arbitrary conditions near the stable pe-
riodic solutions in the (σ , �� ) plane, calculated
with semi-analytical method. All conditions have
a1 = a2.

m2/m1 σ (◦) �� (◦) e1 e2

QS 1 0 180 0.3 0.3
L4 1 60 60 0.3 0.3

AL4 1 95.4 257.4 0.3 0.3

QS 3 0 180 0.3 0.1
L4 3 60 60 0.3 0.3

AL4 3 77.6 249.7 0.3 0.1

curves covering four orbital periods for equally mass planets (mi =
MJup) in QS, L4 and AL4 configurations. The bottom frame of the
same figure shows the error that would be obtained if the RV signal
was calculated assuming constant Keplerian orbits. Even after four
orbital periods, the error remains below ∼4 m s−1. As expected, the
mutual perturbations would be even smaller if the individual mass
were reduced.

To test the mimicking effect described in the previous section, we
selected six nominal solutions near exact fixed points chosen from
Giuppone et al. (2010), three with m1 = m2 and the other three with
m1 = m2/3. In all cases, we fixed m2 = 1MJup. Initial conditions
are summarized in Table 1. In order to test the validity of our
expressions (5) and (7)–(8), constructed from a first-order expansion
in the eccentricities, here we deliberately chose high eccentric orbits
(e1 = 0.3). If our predictions prove correct in these cases, we can
be assured that they will be valid for lower eccentricities as well.

For each nominal configuration, we generated a synthetic RV
curve describing the stellar motion around the barycentre of the
system. The curve was then represented with a discrete sam-
pling of N observation times ti distributed randomly, according
to a homogeneous distribution (thus avoiding aliases in data from
daily/seasonal observations; e.g. Dawson & Fabrycky 2010). In
each data point, the nominal RV value Vr(ti) was displaced to a new
value Vr i = Vr (ti) + N (0, ε) following a Gaussian distribution
with constant variance ε2. The resulting synthetic data set was then
used as input for our orbital fitting code PISA (Pikaia genetic algo-
rithm + simulated annealing; e.g. Beaugé et al. 2008). Since our
data sets cover only four orbital periods, the orbital fit was obtained
assuming non-interacting Keplerian orbits.

1000 different data sets were generated for each orbital config-
uration (QS, L4, AL4) and each mass ratio m2/m1. Each synthetic
data set consisted of N = 100 data points covering a total of four
orbital periods. The results shown here were obtained adopting
ε = 3 m s−1, a value similar to the present-day errors in detection
programs (including stellar jitter). The same analysis was repeated
for other values of ε, showing similar results although the disper-
sion around the mean values decreased/increased as a function of
(Giuppone et al. 2009).

As noted by Laughlin & Chambers (2002) and Goździewski &
Konacki (2006), two planets in a co-orbital configuration produce
only one peak in a Fourier spectrum, meaning that it could easily
be confused with a single planet (obviously more massive than the
individual components). On the other hand, Anglada-Escude et al.
(2010) found that two planets in circular orbits near a 2/1 MMR
could also be falsely detected as a single planet in an eccentric orbit.
So, our question here is the following: is it possible for two planets
in different co-orbital configurations (QS, L4 or AL4) to be falsely
identified as a single planet or as two bodies in a 2/1 resonance?

To test this idea, each of the synthetic data sets was fitted assum-
ing (i) a single planet, (ii) two planets in co-orbital configuration
(without specifying the type) and (iii) two planets in the vicinity
of a 2/1 MMR. The resulting values of weighted rms (wrms) for
the 1000 data sets associated with each nominal solution are dis-
played as histograms in Fig. 4. Each frame corresponds to a given
nominal solution and mass ratio, while the colour code for the
histograms corresponds to the fitted orbital configurations. For ex-
ample, in the top left-hand plot we constructed 1000 synthetic data
sets from a nominal QS configuration of two planets with equal
masses. The data sets were then fitted assuming the three different
possible configurations, the resulting values of wrms plotted. The
coloured histograms show the distribution of the residuals of each
assumed configuration. As we can see, the results corresponding to
QS solutions show the smallest distribution of wrms (both in mean
and dispersion), very similar to the adopted value of ε. Recall that
wrms ∼ ε is usually employed as evidence that not only the fit is
satisfactory but also that the assumed planetary model is correct.

Although for nominal QS solutions and m1 = m2 the co-orbital
configuration gives the best fits, this is not always the case. For
systems with a more massive outer body (m2/m1 = 3), and for any
nominal co-orbital motion, we find that all three assumed orbital
solutions give practically the same error distribution (right-hand
side plots). In other words, it seems that for m2 > m1 the differ-
ence in short-term RV signals of one planet or two bodies in either
a 1/1 or 2/1 MMR is virtually indistinguishable. For equal-mass
planets, the picture is similar, especially if the nominal configu-
ration corresponds to two planets in L4. However, two bodies in
other co-orbital configurations (i.e. QS or AL4) appear easier to
identify.
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Figure 4. Histograms of residuals adopting different orbital configurations
to fit a series of synthetic RV signals. The nominal solution is shown in the
top left-hand side of each frame. Each coloured histogram corresponds to
a different assumed orbital configuration: two planets in co-orbital motion
(black), a single planet (red) and two planets in a 2/1 MMR (green).

Fig. 5 shows an example. The top frame shows a synthetic data
set constructed from a nominal solution of two planets in a sta-
ble AL4 configuration. The three different fits are superimposed
in different colours and show practically no difference. The corre-
sponding distributions of residuals are shown in the bottom frame,
also displaying no significant difference. The best-fitting planetary
masses and orbital elements of each orbital configuration are shown
in Table 2.

4 STA B I L I T Y A NA LY S I S O F T H E FI T S

Although a given co-orbital pair may be falsely identified as another
orbital configuration, we still do not know whether all possible
alternatives are equally dynamically stable. To analyse this point, we
numerically integrated each of the best fits for a time-span covering
104 orbital periods, and calculated the amplitude of oscillation of the
resonant angle σ as well as the difference in longitudes of pericentre
�� = � 2 − � 1. In the case of co-orbital motion, the resonant
critical angle is basically the synodic angle σ = λ2 − λ1, while for
the 2/1 MMR we have chosen the so-called principal resonant angle
σ = 2λ2 − λ1 − � 1.

Table 3 presents a statistical analysis of the dynamical evolution
of all the best fits. We denote the dynamical behaviour as ‘resonant’
if the system is stable during the full integration span and both σ

and �� show small-to-moderate amplitudes of oscillation (<50◦)
around the fixed point. We call librators those configurations where
the resonant angle librates but the secular angle circulates. ‘Non-
resonant’ configurations are those for which both angles circulate.
Finally, ‘unstable’ configurations are those that led to collisions or
escape of one of the bodies within the integration span.

The left-hand side of Table 3 describes the dynamics of the co-
orbital fits. For both mass ratios, the QS solutions appear the most

Figure 5. Comparison of synthetic curves (top frame) and residuals (bottom
frame) from a nominal AL4 solution and fitting the synthetic data set with
three planetary models: co-orbitals (black), single planet (red) and 2/1 MR
(green). The best-fitting values of the masses and orbital elements are shown
in Table 2.

Table 2. Solutions from synthetic data sets generated from configuration
AL4 in Table 1.

Fit m1 m2 a1 a2 e1 e2 wrms
model (MJup) (MJup) (au) (au) (m s−1)

AL4 0.37 0.9 1 1 0.31 0.127 3.03
One planet 1.12 – 1 – 0.107 – 3.26
2/1 MMR 0.18 1.14 0.63 1 0 0.18 3.05

robust. For equal-mass planets, all the fits correctly yield stable
resonant QS orbits, fully consistent with the nominal solution. For
m2/m1 = 3, however, 13 per cent of the synthetic data sets led to
unstable co-orbital solutions. The reliability of the fits decreases
when the adopted nominal solution is L4 and even worse when it
is AL4. In the latter case, more than a third of the data sets led to
unstable solutions.

The right-hand side of the Table 3 now shows results for those fits
that incorrectly identified the signal as that generated by two planets
in the vicinity of the 2/1 MMR. For equal-mass planets, the best
fits are highly unstable for both QS and L4 nominal configurations,
while the AL4 data give a 63 per cent of stable configurations but
with both resonant angles circulating. When we increase the mass
ratio, the compatible 2/1 MMR solutions are slightly more stable
although again correspond mainly to non-resonant configurations.
Again, the QS and L4 configurations are the most unfavourable
for being labelled as 2/1 MMR solutions, although for asymmetric
equilateral Lagrange solutions a small fraction (∼8 per cent) of 2/1
MMR solutions show stable librators.
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Monthly Notices of the Royal Astronomical Society C© 2012 RAS



Origin and detectability of Trojan planets 361

Table 3. Percentage of different dynamical outcomes of the best fits for different mass ratios m2/m1. The value of
m2 was fixed at 1MJup. See text for a detailed description.

m2/m1 Co-orbital fit 2/1 MMR fit

Resonant Unstable Resonant Librators Non-resonant Unstable
(per cent) (per cent) (per cent) (per cent) (per cent) (per cent)

QS 1 100 0 0 0 2 98
L4 1 98 2 0 7 3 92

AL4 1 84 13 0 0 63 37

QS 3 83 13 0 3 16 81
L4 3 81 18 0 6 7 87

AL4 3 62 38 0 8 31 61

5 D ISPERSION O F THE BEST-FITTING
PA R A M E T E R S

Although the best fits assuming two planets in a 2/1 MMR have
proved to be largely unstable, and thus difficult to confuse with
co-orbital planets, we have no clear indication of the cause of the
instability. In this section, we will analyse the planetary masses and
eccentricities obtained form the diverse best fits, and compare them
with the nominal solutions.

Results are presented in Figs 6–8 for equal-mass planets (m1 =
m2 = MJup). Each corresponds to a different nominal co-orbital
solution (QS, L4 and AL4, respectively), and is divided into four
frames. The top graphs show histograms with the distribution of the
eccentricities (left) and deduced planetary masses (right). Masses

Figure 6. Dispersion of best-fitting solutions from synthetic data sets for
two planets with m1 = m2 = MJup in a QS solution. Top: distribution of
the best-fitting eccentricities (left) and planetary masses (right). The single-
planet fit is shown in a continuous green line. For the two-planet fits, the
results for planet 1 are shown in black, while those corresponding to planet 2
are shown in red. In these cases, continuous lines are used for the co-orbital
configuration, while dashed lines correspond to a 2/1 MMR fit. Bottom left:
scatter plot showing the dispersion of best-fitting eccentricities. Results for
the co-orbital fit are shown in black, while those corresponding to a 2/1
MM fit are shown in grey. Bottom right: scatter plot with the dispersion of
eccentricity as a function of planetary mass. Black and red dots correspond
to both planets of a co-orbital solution, orange and grey correspond to the
planets of a 2/1 MMR and green points are the single-planet solutions. Grey
circles were drawn to identify nominal configurations.

Figure 7. Same as Fig. 6, but for two planets with m1 = m2 in an L4

configuration.

are in units of MJup. Different colours and line types correspond
to different configuration or bodies (see caption for details). The
two bottom plots show the dispersion of the eccentricities (left) and
relation between the mass and eccentricities (right). Once again,
different colours are used for different configurations/bodies.

For a nominal QS configuration (Fig. 6), the best-fitting parame-
ters assuming a co-orbital solution show a considerable dispersion:
approximately 0.04 in eccentricities and 0.1MJup in masses. How-
ever, there appears to be no appreciable systematic error, and both
distributions seem symmetric with respect to the nominal values.
The single-planet fits show a very steep distribution around e � 0
and m � 2. To understand this result, we can analyse the expected
RV signal. For a QS configuration, we have σ = 0◦ and �� = 180◦.
Moreover, from equation (1) we have that equal-mass planets imply
e1 = e2, from which we expect K1 = K2. Consequently, equation (7)
leads to

Vr = 2K1 cos λ. (14)

This tells us that two planets in QS orbit produce the same signal as
one planet with semi-amplitude K = 2K1 and eccentricity e = 0. The
dispersion of the best fits shows an excellent agreement with this
prediction, yielding a planet with m = m1 + m2 in a quasi-circular
orbit. Surprisingly, the dispersion of the different fits is smaller than
that obtained assuming (correct) QS orbits.
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Figure 8. Histograms of fitted synthetic data sets for two equally mass
planet in AL4 configuration.

The distribution of the 2/1 MMR fits, shown in the histograms
with dashed lines, shows a strong bimodal shape. Approximately
half of the best fits give masses in the vicinity of (m1, m2) ∼
(2, 0.5) and eccentricities around (e1, e2) ∼ (0, 0.3). The other
half of the solutions clutter around (m1, m2) ∼ (2, 0.1) and (e1, e2)
∼ (0.1, 0.8). This indicates the existence of two local minima in
the residual function with similar values of the wrms and similar
extension in the parameter space. Small differences in the synthetic
data sets would then highlight one or the other, thereby yielding
either two planets in low-to-moderate eccentricities or a solution
in which one of them is almost parabolic. However, as shown in
Table 3, practically all solutions are unstable.

Results for a nominal L4 configuration are shown in Fig. 7. Con-
trary to the previous case, the co-orbital fits now show a very narrow
dispersion around the correct solution, implying that the RV signal
of two planets in an equilateral configuration is more robust than
two bodies in QS. Applying equation (7) to this case yields α1 =
α2 = 30◦, and the same RV signal could also be associated with a
single planet with

Vr =
√

3K1[cos λ + e cos (2λ − � )], (15)

where e = e1 = e2 is the value of the eccentricity of the original
bodies. The distribution of the best single-planet fits follows this
prediction and shows a very sharp peak at (m, e) = (∼1.7, 0.3).

The 2/1 MMR best fits always give two planets with a large
mass ratio. The largest body has mass and orbital elements similar
to the single-planet fit, while its companion has very small mass
and very high eccentricity (K → σ and e → 1). Thus, this second
planet does little more than attempt to resolve the residuals of the
single-planet solution. It is therefore no surprise that practically all
resonant configurations are highly unstable.

Finally, Fig. 8 shows the results obtained from a nominal AL4

configuration. Initial conditions show a small amplitude oscillation
around the equilibrium solution (σ , �� ) = (95.◦4, 257.◦46) which,
substituting into equation (7), leads to an equivalent single-planet
solution with

Vr = 1.34K1[cos λ + 1.24 e1 cos (2λ − � )], (16)

which results in the strong peak in the mass and eccentricity his-
tograms. However, all one-planet solutions have much larger residu-

als than the co-orbital solution (see Fig. 4). Once again, the solutions
assuming a 2/1 MMR generate a bimodal distribution, with part of
the solutions (∼33 per cent) with high eccentricities and conse-
quently unstable. However, contrary to the previous cases, almost
two-thirds of the fits lead to configurations that are dynamically sta-
ble, even if the resonant angles are in circulation. These correspond
to m1 ∼ 0.4 and e1 < 0.2.

The same procedure was also followed for synthetic data sets with
m2/m1 = 3 and e2 = e1/3. Results showed very similar traits as those
presented for equal-mass planets, except for a larger dispersion in
the parameters. This larger dispersion diminishes the proportion of
stable co-orbital fits (see Table 3) but also allows for a significant
number of stable fits assuming two planets in a 2/1 MMR. In the case
of a nominal AL4 configuration, almost one-third of the synthetic
data sets gave stable 2/1 configurations, although only a fraction of
these corresponded to libration.

6 N ESTED VERSUS TWO-PLANET FI TS

Apart from possible misidentification of co-orbital planets as other
configurations, the 1:1 MMR also appears sensitive to the strategy
adopted for the fitting algorithm. There are two commonly used
procedures to fit a two-planet solution into a given RV data set. One
possibility, the simultaneous two-planet fit, assumes the existence of
two masses from the beginning, and attempts to fit the data set with
a model with two periodic signals. The second approach, sometimes
referred to as the nested model, first attempts to fit one planet into
the data. If the residuals are too large or if its Fourier spectrum
shows a significant periodicity, then a second planet is fitted into
the reduced data. Typically, this is adopted if the largest ampli-
tude of the spectrum is larger than a given false alarm probability
(FAP).

In a perfect world, both procedures should give the same results,
or at least very similar to each other. This appears to be the case
for non-resonant planets or even for planets in the 2/1 MMR (see
the analysis done by Beaugé et al. 2008, for the HD 82943 sys-
tem). However, as we will show below, they can lead to completely
different solutions in the case of co-orbital planets.

Using the same type of nominal configurations shown before,
we generated new synthetic RV data sets. We incorporated two
differences: first, the orbital period of the planets was raised to
400 d. Secondly, the data covered 12 years (10 complete periods)
with N = 200 randomly distributed observations assuming ε =
5 m s−1. We repeated the same test fits as in the previous section
with similar results.

We now use the same data to compare both fitting strategies.
Results are shown in Fig. 9. All the periodograms were calcu-
lated using data-compensated discrete Fourier transform (DCDFT;
Ferraz-Mello 1981) which allows a treatment of unequally spaced
data. In the top and middle frames, the power spectra are normalized
so that the total area is unity. The top graph shows the periodogram
of the original data, where the main 400 d signal is clearly visible.
The middle frame shows the power spectra of the residuals after a
single-planet fit. The dashed horizontal line corresponds to an FAP
of 10−4, and was estimated using the Quast algorithm (Ferraz-Mello
& Quast 1987). We note the existence of peak corresponding to a
period near P = 1

3 P1 which appears statistically relevant. After
performing a second planet fit, the wrms was reduced from 6.6 to
5.6 m s−1.

Finally, the lower frame shows periodograms of the residuals af-
ter both two-planet fits. Black curves show the results employing
a nested model, while the red curve corresponds to a simultaneous
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Figure 9. Top: power spectra of a synthetic data of two co-orbital planets
with orbital period of 400 d. Middle: power spectra of the residuals after a
single-planet fit. Horizontal dashed line marks the 99.99 per cent confidence
level. Bottom: power spectra obtained from the residuals of two different
two-planet fits. Red corresponds to a simultaneous fit of two massive bodies,
while the black curve is the results of a nested two-planet model.

two-planet model. The power spectra are quite similar and no
additional periodicity is observed. The resulting masses and plan-
etary parameters of both models are given in Table 4. Although
both results are very different, not only are the wrms very similar,
but also the incorrect system derived from the nested model is dy-
namically stable. In fact, the orbital eccentricities derived from the
nested model are actually significantly lower than the nominal val-
ues. Finally, we found no appreciable difference by using N-body
fits for this data set.

The top frame of Fig. 10 shows, in blue, the data synthetic points
of the fictitious QS configuration. The black curve presents the
expected RV signal from a nested two-planet fit, while the red
curve corresponds to a simultaneous fit of both planets. The bottom
plot gives the resulting O − C, showing practically no difference
between both fits.

7 O R I G I N O F EX OT RO JA N S

In the first part of this paper, we have analysed whether a co-orbital
configuration could give RV signals similar to other dynamical
systems, which may explain why so far no co-orbitals have been

Table 4. Best multi-Keplerian orbital fits for the data generated by two
equal-mass planets in a QS co-orbital configuration. The time of passage
through the pericentre τ is given with respect to the time of the first data
point. All orbital elements are astrocentric and osculating.

Simultaneous two-planet fit Nested two-planet fit

Parameter Planet 1 Planet 2 Planet 1 Planet 2

K (m s−1) 28.59 31.00 54.19 5.26
P (d) 396.9 402.2 399.62 132.25
e 0.3421 0.2696 0.0194 0.1835

m (MJup) 1.8757 1.8469 1.96 0.13
a (au) 0.7461 1.1779 1.06 0.508

V0 (m s−1) −0.051 0.05
wrms (m s−1) 5.004 5.62√

χ2
ν 1.027 1.154

Figure 10. Top: synthetic data set of observations (marked as blue dots) and
two curves generated with solutions obtained with co-orbital simultaneous
fit (red) and two nested single fits (black). Bottom: residuals from both fits
showing no significant differences.

discovered. In this second part, we focus on a possible formation
mechanism.

There is a vast literature trying to explain the formation of Tro-
jan planets. Several different mechanisms have been proposed, in-
cluding accretion from protoplanetary disc (Laughlin & Chambers
2002), pull-down capture into the 1/1 resonance, direct collisional
emplacement, and in situ accretion (Chiang & Lithwick 2005),
or convergent migration of multiple protoplanets (Thommes 2005;
Cresswell & Nelson 2006).

Kortenkamp (2005) studied the gravitational scattering of plan-
etesimals by a protoplanet, revealing that a significant fraction of
scattered planetesimals (between 5 and 20 per cent) can become
trapped as QS in heliocentric 1/1 co-orbital resonance with the
protoplanet. They included a solar nebula gas drag and considered
planetesimals with diameters ranging from ∼1 to ∼1000 km. The
initial protoplanet eccentricities were chosen from e = 0 to 0.15
and protoplanet masses range from 300 down to 0.1 M⊕.
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A different possibility was analysed by Cresswell & Nelson
(2006), where the authors used a hydrodynamical code to simulate
the evolution of systems of up to 10 planets with masses between 2
and 20 M⊕. After a brief period of chaotic interaction characterized
by scattering, orbital exchanges and collisions, some cases led to
co-orbital planets occupying either horse-shoe or tadpole orbits. If
the initial separation between bodies was taken � ∼ 5RHill, such
configurations occurred in 20 per cent of the runs, while the proba-
bility increased to 80 per cent if the initial separation was reduced
to � = 4RHill. They also found that planets sometimes evolved from
horse-shoe to tadpole configurations, although some co-orbital con-
figurations were short-lived, ultimately leading to disruption and
escape of one of its members.

Beaugé et al. (2007) studied the in situ formation of terrestrial-
like Trojan planets starting from a swarm of planetesimals initially
located around the Lagrangian point L4 of a massive planet. They
analysed different masses, initial conditions and both gas-free and
gas-rich scenarios. The swarm of prototrojans were initially located
within the L4 tadpole region with total masses ranging from 1 to
3 M⊕. The gas interaction was modelled using linear and non-linear
gas drags in an N-body code, adjusting the parameters to reproduce
preliminary tests done with the FARGO hydrodynamical code. Their
main results showed that the accretional process within the co-
orbital region is not very efficient, and the mass of the final Trojan
planet never seems to exceed 0.6 M⊕.

Hadjidemetriou & Voyatzis (2011) studied the evolution of a
QS system under the additional effects of a gas drag. They found
that a QS planetary system with initially large eccentricities can
migrate along the family of periodic orbits and be finally trapped
in a satellite-type orbit. Thus, the authors provided a mechanism
for the generation of satellite systems starting from a planetary
configuration. These results agreed with those obtained numerically
by Kortenkamp (2005).

Morbidelli et al. (2008) complete this brief picture, analysing the
interactions between several planetary cores and a ‘density jump’
in a gaseous disc. Depending on the planetary masses and initial
conditions, they found cases of resonance trapping, scattering and
even the formation of temporary binaries.

In this paper, we follow the same scenario of Morbidelli et al.
(2008) to analyse whether co-orbital systems may also be formed
through the interaction of two planets with a density jump in pro-
toplanetary disc. We thus consider two planets initially far from
mean-motion commensurabilities that migrate inwards, ultimately
becoming locked in resonance. We assume that the disc possesses
an inner cavity which acts as a planetary trap, halting the migration
of the massive bodies. For simplicity, we consider a constant surface
density o outside the cavity, and a constant value i inside. The
density jump is set at a radial distance r = 1 (arbitrary units) from
the star. Thus, we characterize the density jump in the disc by two
main parameters: the density ratio F = o/i and the width � of
the cavity edge (see Fig. 11).

Our main simulations were performed using the FARGO-2D public
hydrocode, whose basic algorithm may be found in Masset (2000).
This code solves the Navier–Stokes equations for a Keplerian disc
subject to the gravity of the central object and that of embedded
planets. The disc is assumed isothermal and not self-gravitating.

7.1 Preliminary N-body simulations

Before undertaking the main hydrosimulations, we wish to anal-
yse what disc properties (o, F, �, etc.) and planetary parameters
(masses, initial separation, etc.) are compatible with the formation

Figure 11. Surface density of the gas disc in the vicinity of a density jump
or inner cavity. o and i are the values outside and inside the jump,
also characterized by a half-width �. The black curve shows the azimuthal
average (r) obtained from a hydrodynamical simulation (FARGO), while the
red curve is the analytical approximation using equation (17).

of co-orbital solutions. Since such a broad sweeping of the pa-
rameter space is extremely time consuming for a hydrocode, we
employed an N-body code for a series of preliminary runs. The
interaction between the planets and the disc was approximated by
a type I migration following the semi-analytical model of Tanaka,
Takeuchi & Ward (2002) and Tanaka & Ward (2004). In the case of
a smooth density profile, explicit expressions for the forces acting
on the planetary masses can be found in Ogihara, Duncan & Ida
(2010).

Since we will be working with planetary masses smaller than
1MSat, type I migration is expected to be a fair description of the
tidal interactions with the disc. However, we stress that these N-body
simulations are not expected to be accurate, but are used solely as
guidelines for the full hydrosimulations introduced in the following
sections.

The inner cavity in the disc may be approximated with a hyper-
bolic tangent, such that

ln (r) = Ca tanh x + Cb, with x = r − 1

�
, (17)

and where the coefficients are given by

Ca = 1

2
(ln o − ln i), Cb = 1

2
(ln o + ln i). (18)

Fig. 11 shows two representations of (r) with a test cavity (edge
at r = 1). The black curve was generated with FARGO (see Benı́tez-
Llambay, Masset & Beaugé 2011, for details), while the red curve
was obtained applying equation (17). Both appear very similar,
although the analytical function has a smoother trend near the edges
of the cavity.

Having an explicit functional form for the density profile, we can
modify Tanaka’s equations for the corotational torque to reproduce
the contribution generated by a density jump in the disc. This was
done following the calculations deduced in Masset et al. (2006a),
and the resulting expressions were incorporated into our N-body
code. With this tool we were then able to reproduce the dynamical
behaviour of massive planets near the density jump without needing
to artificially halt the planet at a given orbital distance from the star.

Benı́tez-Llambay et al. (2011) showed that the real population of
close-in exoplanets is consistent with a disc inner cavity located at
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Figure 12. N-body simulations of two planets encountering an inner cavity
in the disc located at r = r0 = 1 (arbitrary units). Top: using constant value
for density (o = 15o) and different pairs of planets with mass ratio
from 10−2 to 1. The co-orbital configuration is achieved if the mass ratio
is 0.7 < m2/m1 < 1.4, this range becoming wider for increasing values of
o. Middle frame: two Saturn-mass planets in a disc with different o. For
values larger than 12o, final co-orbital configurations appear with high
probability. Bottom frame: two simulations with m1 = m2 = MSat and o =
15o, but considering different magnitudes for the eccentricity damping.
Meanwhile, planet 1 was fixed at 1.5 au, we change the position of planet 2
from 1.9 to 3.2 au in order to represent better the results in the figure.

r0 ∼ 0.01 au. However, since our N-body simulations will be used
primarily as a stepping stone into hydrosimulations, it is preferable
to scale the initial conditions to r0 = 1. Appendix A shows the
scale transformations necessary for the gas density and time units
to ensure the same dynamics. For example, assuming a typical
surface density for the disc of  ∼ 5800 g cm−2 at r = 1 au, the
corresponding value at any arbitrary spatial scaling parameter r0

gives  = 6.4 × 10−4 M� r−2
0 , where r0 is given in au.

Fig. 12 shows the results of several simulations using our mod-
ified N-body code with a density jump centred at r = r0 = 1 and
with a half-width of � = 2H/r. Throughout all our simulations,
both N-body and hydro, we assumed a disc scaleheight equal to
H/r = 0.05 and a depth of the cavity equal to F = o/i = 10. The
density outside the cavity will be set to o = No, with N a positive
integer and o = 10−3 M� au−2. In other words, we will perform
simulations with different surface densities given as multiples of an
arbitrary base value o.

All plots show the time evolution of the ratio of mean motions
n1/n2 between both planets. In the top plot, we considered a fixed

value of o = 15o, but varied the mass ratio of the bodies in the
interval m2/m1 ∈ [10−2, 100]. In all cases, the mass of the largest
body was equal to 1MSat.

Since m1 has the smallest initial semimajor axis, as well as the
largest mass, its orbit suffers a faster orbital decay, and is the first
planet to reach the cavity edge. In all the runs, this body was trapped
near the centre of the density jump (r ∼ 1.05r0) with a small eccen-
tricity. Meanwhile, the outer approaches the cavity edge, encoun-
tering successive and increasingly strong MMRs in its path. The
orbital evolution is then dictated by two opposing forces: (i) the dif-
ferential disc torque that subtracts angular momentum and causes
further orbital decay and (ii) resonant perturbations with the inner
mass that can generate conditions for a net increase in the angular
momentum.

The top plot of Fig. 12 shows that the system is stopped at differ-
ent MMRs depending on the mass ratio. For small values of m2/m1,
the two planets are trapped in the 3/1 MMR, while the 3/2 com-
mensurability is favoured for larger mass ratios. This is expected,
since a larger outer mass requires stronger resonance perturbations
to counteract the disc torque. For m2/m1 ≥ 0.7, however, it appears
no commensurability is sufficiently strong, and both bodies reach
the cavity edge and evolve towards a stable co-orbital configuration.

From these results it then appears that co-orbital planets may be
formed at a density jump in the disc if the mass ratio is sufficiently
close to unity. We checked that the same result was obtained for
other mass values, considering planets ranging from Neptune to
Jupiter analogues.

The middle plot of Fig. 12 now analyses the dependence on the
value of the surface density o outside the cavity, while maintain-
ing the same cavity depth F. Results are shown for two equal-mass
planets (m1 = m2 = MSat) and four different multiples of the base
density o. We note that smaller densities favour resonance trap-
ping in non-co-orbital configurations (e.g. 5/4 MMR), but for large
values of o, typically above 1 ∼ 10o, co-orbital systems are the
usual outcome. Of course, there is some dependence on the initial
conditions, mainly on the initial separation of the bodies, but these
results are surprisingly robust and are representative of most of our
runs.

Finally, the bottom frame shows the dependence on the eccen-
tricity damping force Fdamp. Although both the circularization time-
scale τ e and the orbital decay time τ a have the same dependence
with the planetary mass and disc density (e.g. Tanaka & Ward
2004), it is possible to fictitiously modify the eccentricity damping
by changing the tangential force suffered by the bodies. Our main
aim in this experiment is to see how the dynamics may be affected
by different values of τ e/τ a. The plot shows two simulations, one
with the correct value of τ e (black) and the other in which the damp-
ing rate was reduced by a factor of 10 (blue). Although a co-orbital
configuration was achieved in both cases, the reduced damping
generates a much larger amplitude of oscillation of the eccentrici-
ties which may ultimately lead to orbital instability. In fact, some
of these simulations showed complex exchanges between different
types of co-orbital solutions (L4, L5, etc.).

In conclusion, our preliminary N-body simulations appear to in-
dicate that co-orbital systems of massive planets can be obtained if
the mass ratio is sufficiently close to unity and the surface density
of the disc is sufficiently high. Although the final outcomes have
a certain dependence on the initial conditions (like all resonance
trapping phenomena), we repeated the runs for initial separations
between 0.5 and 1.7r0, finding no significant changes in the results.
Inspired by these results, our next step is to upgrade to hydrody-
namical simulations.
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7.2 Hydronumerical set-up

Our hydrosimulations were carried out using the FARGO code (Masset
2000) with a central star of 1 M�. We consider two-dimensional,
locally isothermal discs uniformly distributed over a polar grid.

The disc inner cavity was generated using an ad hoc step in
kinematic viscosity around r = r0 = 1, using the same recipe as
described in Masset et al. (2006a). For all our runs, we adopted a
cavity depth of F = o/i = 10, and a half-width of � = 0.4.
The kinematic viscosity was considered uniform outside the cavity,
and equal to ν = 10−5 r2

0 �−1
0 , where �0 is the orbital frequency

at radius r0. The disc aspect ratio was chosen as H/r = 0.05 and
also constant over r. Boundary conditions were chosen to be non-
reflecting for the inner edge of the disc.

The disc was represented with a spatial resolution of 384 az-
imuthal zones and 168 radial zones. The inner radius of the disc is set
to 0.42r0 and the outer radius is set to 4.2r0. This resolution allows
us to identify details as small as 0.04r0. Casoli & Masset (2009)
showed that the co-orbital corotation torque exerted by the disc
over a planet occurs in a scale of xs ∼ 0.01r0 for m ∼ 2 M⊕, while
Masset, D’Angelo & Kley (2006b) showed that the horse-shoe zone
width in a two-dimensional disc scales as xs = 1.16

√
q/h. Conse-

quently, xs should increase with the planetary mass. For example,
if we are interested in the dynamical evolution of Saturn-type plan-
ets, we expect that our choice for the spatial resolution should be
adequate.

To test this idea, we performed several simulations with the same
initial conditions but different spatial resolutions for the disc, and
compared the dynamical evolution of the planets. An example is
shown in Fig. 13 for two Saturn-like planets initially in circular
orbits far from the cavity edge and in non-resonant conditions. Both
simulations show the same qualitative results, not only in the final
outcome of the planets (both runs end in co-orbital configurations)
but also in the behaviour of the eccentricities. The only notable
change is a slight difference in the radial distance at which the
planets are trapped. However, this is not significant and could be
explained due to a decrease of the corotational torque from a low-
resolution description of the horse-shoe region.

Following the predictions of our N-body runs, all our hydrosim-
ulations were done with two equal-mass planets (m1 = m2) in a
high-density disc. Initial conditions were varied with respect to
both the initial separation between the planets and the initial ec-
centricities. We also considered different planetary masses between
1 M⊕ and 1MSat.

Figure 13. Comparison between two hydrosimulations with the same initial
conditions (see text for details) but different grid resolutions. The high-
resolution simulation was constructed with 306 radial zones, while the low-
resolution run contained only 168 radial zones. Both lead to co-orbital
configurations with similar global dynamical features.

Figure 14. Snapshot of the final outcome of a high-resolution (306 radial
zones) hydrosimulation leading to two planets locked in a co-orbital config-
uration. One of the planets (m1) is fixed in the x-axis. The numbers 1, 2, 3
and 4 represent the location of the other planet (m2) at different times of the
run, with number 4 being the final configuration.

Under a wide variety of initial conditions, we found that the
orbital evolution of two Saturn-mass planets ultimately leads to the
formation of stable co-orbital configurations. An example is shown
in Fig. 14, where both bodies are trapped in L4/L5-type motion with
a libration of both the resonant angle σ = λ2 − λ1 and the difference
in longitudes of pericentre �� = � 2 − � 1.

To test the robustness and stability of the co-orbital solutions
to additional perturbations, we performed a new series of runs
including additional six Earth-mass planets initially far from the
cavity edge. The idea behind this set of experiments is to analyse
both the orbital evolution of these new bodies as well as their ef-
fects on the two co-orbitals. Typical results are shown in Fig. 15,
where each colour curve corresponds to a different planet (see in-
laid colour code). Planets 1 and 2 (i.e. m1 and m2, respectively) are
the original Saturn-mass bodies in co-orbital motion, while planets
3–8 are the new Earth-size masses. Since this type of simulation
included smaller masses and a larger population, we employed a
high-resolution description of the disc.

We perceived no significant instability in the co-orbitals, and
their configuration remained unaffected by the new masses. These,
however, suffered several cases of mutual scattering and close en-
counters that caused the ejection of three of the masses. One of
the close encounters (between planets 4 and 6) led to a temporary
trapping of planet 4 in the cavity edge but finally led to the forma-
tion of a new co-orbital system with planet 8. The role of scattering
between planets as a formation mechanism for co-orbitals has al-
ready been pointed out by Cresswell & Nelson (2006). The final
outcome of this system consists of an inner co-orbital system, a sin-
gle Earth-mass planet trapped in an exterior MMR and an additional
co-orbital pair in another resonance. Although this appears a very
complex multiple resonant configuration, we found no indication of
long-term instability.

Fig. 16 shows the dynamics of both pairs of co-orbitals: planets 1
and 2 are displayed on the left-hand plots, while the co-orbital
system composed of planets 4 and 8 is shown on the right. Top
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Figure 15. Results of a low-resolution (168 radial zones) hydrosimulation
of eight planets with masses in the Earth–Saturn range. Top plot shows
the semimajor axis as a function of time, while the lower frame shows the
eccentricities.

graphs present the temporal evolution of the resonant angle σ =
�λ = λ2 − λ1, while the middle plots show �� = � 2 − � 1. Once
planet 4 is scattered into the cavity, the resonance relation between
planets 1 and 2 is temporarily disrupted, resulting in a short-lived
circulation of both angles. However, once the Earth-mass planet is
sent back outside the cavity, the co-orbital configuration of the inner
planets is re-established, although around L5 instead of L4. We did
some follow-up integrations without hydrodynamical interaction
choosing two intermediate stages as initial conditions. The bottom
left-hand plot shows the results of choosing as initial conditions
the system configuration at t = 450 and 11 450, respectively. The
behaviours of both critical angles show a small amplitude libration
around the equilibrium solutions. Between these two solutions, the
system experiments temporarily AL4 and AL5 configurations.

The dynamical evolution of the small-mass pair is more complex,
and a stable configuration is only reached near the end of the sim-
ulation, and corresponds to an AL5-type orbit with large amplitude
of oscillation of �� or about 150◦.

8 C O N C L U S I O N S

In this paper, we have analysed the detectability and possible forma-
tion mechanism of hypothetical massive planets in stable co-orbital

Figure 16. Evolution of characteristics angles for co-orbital solutions (top
frame �λ and middle frame �� ) during the hydrosimulation. We reserve
left-hand side to the system 1–2 and right-hand side to the system 4–6. We
plot in the lower frames the evolution of characteristics angles integrating
the system without considering the interaction with the disc. At left frame,
two conditions were chosen, one at t = 450 and the other at t = 11450
(marked as colour circles in the middle frame), meanwhile at right bottom
frame the final configuration of Earth-like planets was integrated.

configurations. So far, there are no known extrasolar planetary sys-
tems containing co-orbital bodies, which may imply that these con-
figurations are extremely difficult either to form or to detect from
RV surveys.

We have studied the detectability of three different types of co-
orbital motion (QS, L4/L5 and AL4/AL5), trying to evaluate possible
bias in detections and identify what kind of compatible configura-
tion could be detected. The analysis of Keplerian contributions to
radial velocities allowed us to predict the value for the signal of one
single planet that could be confused with co-orbital configurations.

For even low values of errors in radial velocities measurements
(ε = 3 m s−1) and observation time-spans covering four orbital pe-
riods (which include most of the presently detected exoplanets),
co-orbital configurations appear hard to identify: the results of the
fitting process could easily confuse the RV data with that stem-
ming from other configurations/systems (single planet or 2/1 MMR
system). For large mass ratios, a correct identification of co-orbital
configuration is even more complicated and easier to confuse with
the other configurations. In all cases, the residuals of the different
systems are comparable, even more so for large mass ratios (see
Fig 4).

Observation data sets covering longer time-spans allow us to de-
tect mutual perturbations, but once again the best fits are not always
associated with co-orbital motion. We have found several cases
where other resonant configurations (i.e. 3/1 commensurability) ac-
tually give smaller residuals and better results.

Co-orbital motion is sensitive not only to the data set, but also
to the fitting procedure. Nested two-planet strategies may also con-
fuse the real dynamics and yield results widely different from the

C© 2012 The Authors, MNRAS 421, 356–368
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



368 C. A. Giuppone, P. Benı́tez-Llambay and C. Beaugé

nominal orbits; in this sense, simultaneous two-planet fits seem
more robust.

Transit observations should help distinguish co-orbitals planets
from other solutions.

Finally, we have found that stable co-orbital systems with two
massive planets may be formed from originally non-resonant orbits
through their interaction with an inner cavity in the protoplanetary
disc, as long as the surface density of the disc is sufficiently large.
Both our N-body and hydrosimulations indicate a preference to-
wards co-orbitals with similar masses (i.e. m1 ∼ m2). In all our
simulations with large mass ratios, the smaller planet was either
pushed inside the cavity or trapped in a mean-motion commensu-
rability outside the density jump.
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Casoli J., Masset F., 2009, ApJ, 703, 845
Chiang E. I., Lithwick Y., 2005, ApJ, 628, 520
Cresswell P., Nelson R. P., 2006, A&A, 450, 833
Dawson R., Fabrycky D. C., 2010, ApJ, 722, 937
Ferraz-Mello S., 1981, AJ, 86, 619
Ferraz-Mello S., Quast G., 1987, in Kleczek J., ed., Exercises in Astronomy.

D. Reidel, Dordrecht, p. 231
Giuppone C. A., Tadeu dos Santos M., Beaugé C., Ferraz-Mello S.,
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A P P E N D I X A : A B O U T T H E SC A L E
O F S I M U L AT I O N S

All our simulations were performed with a density jump centred
at r0 = 1. If we wish to relate our results to another scale, for
example r0 = 0.01, we need to modify not only the spatial scale
of the orbital system but also the surface density value. Here, we
present a simple recipe for the scale transformations in order to
preserve the complete dynamics, including both the gravitational
interactions and migration time-scale.

The equation of motion of a planet with mass mi interacting
gravitationally with other N bodies of mass mj is given by

d2r i

dt2
= −

∑
j �=i

Gmj

r2
ij

eij , (A1)

where eij are the unit vectors corresponding to the relative positions.
If we introduce a scale change in the coordinates defined by r =
αr′ and a temporal transformation defined by t = βt′, then the
gravitational dynamics is invariant if β = α3/2.

In our problem, however, the dynamical evolution of the planets
also includes their interaction with the gas disc, which is specified
by the gradient of the total differential torque �. If we then desire
to preserve the complete dynamics of the system under the spatial
rescaling, then the torque must scale as

� = α−1�′. (A2)

For a type I migration, the total torque is given by �(r) ∝
(r)n2r4, where n is the mean motion. We also assume that the
surface density is given by a power-law expression of the type

(r) = o

(
r

r0

)η

, (A3)

for a suitable exponent η. The coefficient o denotes the surface
density at r = r0. Then, if we apply the spatial and temporal transfor-
mations required to preserve the gravitational dynamics, we obtain

� = αo

(
r ′

r ′
0

)η

n′2r ′4 = α

(
o

′
o

)
�′. (A4)

Therefore, for scaling our simulation to a new suitable value of r0,
it is necessary to do the transformation

r = αr ′, (A5)

t = α3/2t ′, (A6)

o = α−2′
o. (A7)

For this new radius, time and density value, the dynamics of system
is invariant.
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