496 research outputs found

    Error Analysis of TT-Format Tensor Algorithms

    Get PDF
    The tensor train (TT) decomposition is a representation technique for arbitrary tensors, which allows efficient storage and computations. For a d-dimensional tensor with d 65 2, that decomposition consists of two ordinary matrices and d 12 2 third-order tensors. In this paper we prove that the TT decomposition of an arbitrary tensor can be computed (or approximated, for data compression purposes) by means of a backward stable algorithm based on computations with Householder matrices. Moreover, multilinear forms with tensors represented in TT format can be computed efficiently with a small backward error

    Parallel computation of echelon forms

    Get PDF
    International audienceWe propose efficient parallel algorithms and implementations on shared memory architectures of LU factorization over a finite field. Compared to the corresponding numerical routines, we have identified three main difficulties specific to linear algebra over finite fields. First, the arithmetic complexity could be dominated by modular reductions. Therefore, it is mandatory to delay as much as possible these reductions while mixing fine-grain parallelizations of tiled iterative and recursive algorithms. Second, fast linear algebra variants, e.g., using Strassen-Winograd algorithm, never suffer from instability and can thus be widely used in cascade with the classical algorithms. There, trade-offs are to be made between size of blocks well suited to those fast variants or to load and communication balancing. Third, many applications over finite fields require the rank profile of the matrix (quite often rank deficient) rather than the solution to a linear system. It is thus important to design parallel algorithms that preserve and compute this rank profile. Moreover, as the rank profile is only discovered during the algorithm, block size has then to be dynamic. We propose and compare several block decomposition: tile iterative with left-looking, right-looking and Crout variants, slab and tile recursive. Experiments demonstrate that the tile recursive variant performs better and matches the performance of reference numerical software when no rank deficiency occur. Furthermore, even in the most heterogeneous case, namely when all pivot blocks are rank deficient, we show that it is possbile to maintain a high efficiency

    fMRI evidence of ‘mirror’ responses to geometric shapes

    Get PDF
    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control

    Active Vision during Action Execution, Observation and Imagery: Evidence for Shared Motor Representations

    Get PDF
    The concept of shared motor representations between action execution and various covert conditions has been demonstrated through a number of psychophysiological modalities over the past two decades. Rarely, however, have researchers considered the congruence of physical, imaginary and observed movement markers in a single paradigm and never in a design where eye movement metrics are the markers. In this study, participants were required to perform a forward reach and point Fitts’ Task on a digitizing tablet whilst wearing an eye movement system. Gaze metrics were used to compare behaviour congruence between action execution, action observation, and guided and unguided movement imagery conditions. The data showed that participants attended the same task-related visual cues between conditions but the strategy was different. Specifically, the number of fixations was significantly different between action execution and all covert conditions. In addition, fixation duration was congruent between action execution and action observation only, and both conditions displayed an indirect Fitts’ Law effect. We therefore extend the understanding of the common motor representation by demonstrating, for the first time, common spatial eye movement metrics across simulation conditions and some specific temporal congruence for action execution and action observation. Our findings suggest that action observation may be an effective technique in supporting motor processes. The use of video as an adjunct to physical techniques may be beneficial in supporting motor planning in both performance and clinical rehabilitation environments

    Reenacting sensorimotor features of drawing movements from friction sounds

    No full text
    International audienceEven though we generally don't pay attention to the friction sounds produced when we are writing or drawing, these sounds are recordable, and can even evoke the underlying gesture. In this paper, auditory perception of such sounds, and the internal representations they evoke when we listen to them, is considered from the sensorimotor learning point of view. The use of synthesis processes of friction sounds makes it possible to investigate the perceptual influence of each gestures parameter separately. Here, the influence of the velocity profile on the mental representation of the gesture induced by a friction sound was investigated through 3 experiments. The results reveal the perceptual relevance of this parameter, and particularly a specific morphology corresponding to biological movements, the so-called 1/3-power law. The experiments are discussed according to the sensorimotor theory and the invariant taxonomy of the ecological approach

    The Self in Social Interactions: Sensory Attenuation of Auditory Action Effects Is Stronger in Interactions with Others

    Get PDF
    Weiss C, Herwig A, Schuetz-Bosbach S. The Self in Social Interactions: Sensory Attenuation of Auditory Action Effects Is Stronger in Interactions with Others. PLoS ONE. 2011;6(7): e22723.The experience of oneself as an agent not only results from interactions with the inanimate environment, but often takes place in a social context. Interactions with other people have been suggested to play a key role in the construal of self-agency. Here, we investigated the influence of social interactions on sensory attenuation of action effects as a marker of pre-reflective self-agency. To this end, we compared the attenuation of the perceived loudness intensity of auditory action effects generated either by oneself or another person in either an individual, non-interactive or interactive action context. In line with previous research, the perceived loudness of self-generated sounds was attenuated compared to sounds generated by another person. Most importantly, this effect was strongly modulated by social interactions between self and other. Sensory attenuation of self-and other-generated sounds was increased in interactive as compared to the respective individual action contexts. This is the first experimental evidence suggesting that pre-reflective self-agency can extend to and is shaped by interactions between individuals

    Keeping in Touch with One's Self: Multisensory Mechanisms of Self-Consciousness

    Get PDF
    BACKGROUND: The spatial unity between self and body can be disrupted by employing conflicting visual-somatosensory bodily input, thereby bringing neurological observations on bodily self-consciousness under scientific scrutiny. Here we designed a novel paradigm linking the study of bodily self-consciousness to the spatial representation of visuo-tactile stimuli by measuring crossmodal congruency effects (CCEs) for the full body. METHODOLOGY/PRINCIPAL FINDINGS: We measured full body CCEs by attaching four vibrator-light pairs to the trunks (backs) of subjects who viewed their bodies from behind via a camera and a head mounted display (HMD). Subjects made speeded elevation (up/down) judgments of the tactile stimuli while ignoring light stimuli. To modulate self-identification for the seen body subjects were stroked on their backs with a stick and the felt stroking was either synchronous or asynchronous with the stroking that could be seen via the HMD. We found that (1) tactile stimuli were mislocalized towards the seen body (2) CCEs were modulated systematically during visual-somatosensory conflict when subjects viewed their body but not when they viewed a body-sized object, i.e. CCEs were larger during synchronous than during asynchronous stroking of the body and (3) these changes in the mapping of tactile stimuli were induced in the same experimental condition in which predictable changes in bodily self-consciousness occurred. CONCLUSIONS/SIGNIFICANCE: These data reveal that systematic alterations in the mapping of tactile stimuli occur in a full body illusion and thus establish CCE magnitude as an online performance proxy for subjective changes in global bodily self-consciousness

    Action–effect anticipation in infant action control

    Get PDF
    There is increasing evidence that action effects play a crucial role in action understanding and action control not only in adults but also in infants. Most of the research in infants focused on the learning of action–effect contingencies or how action effects help infants to infer goals in other persons’ actions. In contrast, the present research aimed at demonstrating that infants control their own actions by action–effect anticipation once they know about specific action–effect relations. About 7 and 9-month olds observed an experimenter demonstrating two actions that differed regarding the action–effect assignment. Either a red-button press or a blue-button press or no button press elicited interesting acoustical and visual effects. The 9-month olds produced the effect action at first, with shorter latency and longer duration sustaining a direct impact of action–effect anticipation on action control. In 7-month olds the differences due to action–effect manipulation were less profound indicating developmental changes at this age
    corecore