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Abstract

The concept of shared motor representations between action execution and various covert conditions has been
demonstrated through a number of psychophysiological modalities over the past two decades. Rarely, however, have
researchers considered the congruence of physical, imaginary and observed movement markers in a single paradigm and
never in a design where eye movement metrics are the markers. In this study, participants were required to perform a
forward reach and point Fitts’ Task on a digitizing tablet whilst wearing an eye movement system. Gaze metrics were used
to compare behaviour congruence between action execution, action observation, and guided and unguided movement
imagery conditions. The data showed that participants attended the same task-related visual cues between conditions but
the strategy was different. Specifically, the number of fixations was significantly different between action execution and all
covert conditions. In addition, fixation duration was congruent between action execution and action observation only, and
both conditions displayed an indirect Fitts’ Law effect. We therefore extend the understanding of the common motor
representation by demonstrating, for the first time, common spatial eye movement metrics across simulation conditions
and some specific temporal congruence for action execution and action observation. Our findings suggest that action
observation may be an effective technique in supporting motor processes. The use of video as an adjunct to physical
techniques may be beneficial in supporting motor planning in both performance and clinical rehabilitation environments.
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Introduction

Movement imagery (MI), the covert rehearsal of human

movement, has been proposed to improve motor performance

and motor learning in a number of areas, for example, sport [1,2]

and, more recently, rehabilitation [3]. In addition, it has been

known for some time that the action observation (AO), also

referred to as modelling, can facilitate learning and performance

for the observer [4]. Recently, AO has also been shown to support

MI for individuals who experience difficulties in generating images

[5] and to act as a prime for action execution (AE) [6]. Since there

is good evidence for movement optimization via one or more of

these three action-related conditions (AE, AO and MI), it is

intuitively appealing to propose that both MI and AO may be

accessing the same neural substrate as AE and sharing similar

mechanisms for motor behaviour. In support for this claim, a

growing body of evidence suggests that all conditions, AE, AO [7]

and MI [8], are similarly constrained by one of the fundamental

laws governing human movement, Fitts’ Law. Specifically, the law

states that the time needed to move as quickly as possible between

two targets is determined by the width of the targets and the

distance separating them [9]. In addition, data from brain imaging

studies have revealed interdependence between these action-

related cognitive skills linked closely to their neural anatomical-

equivalence [9,10,11]. This neural ‘sharedness’ was identified as

an important marker within Jeannerod’s simulation hypothesis

[12]. He proposed the existence of a shared neural network or

motor representation that could be accessed to predict action

outcome during AE and also generate similar movement planning

and expectations during equivalent AO and MI conditions. A

common motor representation suggests that the covert elements of

action related tasks, intention, programming, and preparation,

might be primed and modulated through any of the three

simulation conditions, albeit to different extents.

For the past two decades, behavioural changes following AO

have been linked to the now ubiquitous human mirror neuron

system. This widely distributed network is believed to ‘resonate’

when an individual observes an action that is similar to one held

within their own motor repertoire [13]. In line with Jeannerod’s

predictions, there is also evidence that motor imagery processes

access this frontoparietal mirror network. However, despite the

frequency with which the simulation theory is used to explain

improvements in motor performance following AO and MI, direct

tests of this hypothesis, studies involving all three states in single

paradigm, are rare. In addition, the majority of research has

primarily focussed on comparisons of neural blood flow. Although

the haemodynamic response can be used to indicate cortical

activity, a more detailed interpretation of the neuronal activity

requires additional evidence acquired through alternative exper-

imental approaches. Therefore, to permit a greater understanding

of the simulation theory, it would therefore seem pertinent to
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include all simulation conditions (AE, AO, MI) in the same

experiment and to consider dynamic, behavioural markers.

To date, we have found only one behavioural study [14] where

the experimenters compared the three conditions within a single

paradigm. In this study, participants were asked to perform,

observe and imagine a series of 25 squatting movements whilst

lifting a 2.5 kg dumbbell in each hand. Physiological activity was

measured during the tasks and compared between conditions. A

significant increase in respiration rate, heart rate, and muscle

activity, compared to rest, was recorded during their AE

condition. In contrast, only respiration rate increased significantly

during AO and MI (compared to rest). The authors suggested that

mean heart rate might not be sufficiently sensitive to detect subtle

change during covert performance. In addition, the results may

have been confounded given that perspective was not controlled;

AE and MI were conducted from a first person perspective and

AO from a third person perspective. In this regard, the

observation of the rise and fall of the diaphragm during respiration

may have elicited a stronger response in the mirror neuron system

during AO.

An emerging, and more sensitive method of comparing overt

and covert motor behaviour is eye gaze registration [15,16]. The

gaze metrics commonly measured in this experimental approach

are fixations, the brief periods of time (typically greater than

100 ms when the eyes are stable and consciously focused on a

visual cue [17]). Fixations can be described in terms of their: (i)

duration, suggested to reflect information processing demand; (ii)

location, considered to represent visual cue attendance; (iii)

number, i.e. how many are made to a target and influenced by

skill level and task complexity, and; (iv) movement time, a

temporal marker defined as the time between the end of one

fixation and the start of the next [18]. Collectively, the fixation

metrics permit real-time analysis of cognitive processes associated

with visuomotor tasks. Supporting Jeannerodian theory, contem-

porary research has demonstrated that fixations are congruent

between AE and MI [18], AE and AO [19], and AO and MI [20].

Using this fixation approach with a block stacking task, Flanagan

and Johansson [19] observed a similar proactive strategy where

the fixations pre-empted hand movement in AE and AO. Based

on the temporal congruency of the fixations, they reasoned that a

motor strategy, rather than a purely visual strategy, is invoked

during AO as it is in AE. In contrast, Gesierich et al. [21]

employed a similar task and reported that some, but not all,

participants executed reactive eye movements where fixations

followed hand movement in AO. They proposed that the motor

representation was not rigid between conditions but context

dependent. The contrasting findings may also be explained by the

different task instructions. In the Flanagan and Johansson study

[22], no observation instructions were provided. In contrast,

Gesierich et al. [21] asked participants to ‘‘observe how the model

creates the pyramid’’. Task instructions that precede AO have

been demonstrated to significantly influence subsequent neural

activation [23]. Specifically, the instructions to ‘‘observe with the

intent to imitate’’ have been shown to activate a neural profile that

is most similar to AE. The different gaze strategies may therefore

reflect different interpretations of the task requirements. This

highlights the need for strict and consistent task instructions and

the use of manipulation checks to confirm appropriate task

compliance. In a study that controlled task instructions carefully,

McCormick et al. [20] considered eye gaze metrics in AO and

unguided MI (UGMI; imagery performed in the absence of visual

and temporal cues) conditions using a horizontal reach movement.

They observed no difference in fixation location, but found a

significant difference in fixation duration. They reasoned that the

shorter fixation duration in UGMI might have been due to the

decrease in information processing demands resulting from

reduced visual percepts. In a similar manner, other researchers

[18] report that the congruency of fixations between AE and MI

can be enhanced when the MI task is assisted with visual and

temporal cues. Corroborating these reports, Gueugneau et al. [24]

demonstrated that MI was facilitated when visual cues were

available and contingent eye movements were permitted (versus

prevented). Collectively, these studies imply that similar informa-

tion is attended to across simulation conditions but not the detail of

how eye movement metrics may vary across conditions. A

comprehensive inter-condition comparison of fixation duration

would address this shortfall.

In other domains, such as sports, law enforcement, medicine

and the military, the duration of the final fixation prior to

movement onset in aiming tasks is referred to as the ‘quiet eye’

[17]. This period of time is considered to reflect the information

processing demands associated with programming the parameters

of movement such as force, direction, and velocity. Williams et al.

[25] demonstrated that in near aiming tasks (billiards) the quiet eye

increases linearly with the complexity of the task. If the quiet eye

reflects covert elements associated with motor performance, then,

in accordance with simulation theory, it should be comparable

(relatively) between simulation conditions and similarly influenced

by task complexity.

In the current study, we sought to test directly and compre-

hensively the simulation theory using eye movements. We

compared fixation metrics across four different conditions (AE,

AO, guided motor imagery (GMI) and UGMI). All participants

performed a reach and point task at three levels of complexity,

defined by target width. Movement time (MT) was measured in

AE, GMI and UGMI conditions to confirm task compliance.

Based on the tenets of the simulation theory we hypothesized that:

i) MT would be congruent between AE, GMI and UGMI;

ii) the number of fixations to the target location would remain

congruent in all conditions; and

iii) total target fixation duration would be congruent across all

conditions.

Methods

Ethics Statement
The study was approved by the Exercise and Sport Science

Ethics Sub-Committee, Department of Exercise and Sport

Science, Manchester Metropolitan University.

Participants
Following purposeful sampling, a homogeneous group of

thirteen healthy participants, with normal or corrected to normal

vision and no upper limb motor impairment, volunteered to

participate in the study. Participants were naive to the hypotheses

being tested and supplied written informed consent prior to

participation. Handedness was assessed by the Edinburgh

Handedness Inventory [26] with all participants scored as right-

handed (96.1264.36). The age range of participants was

51.4966.01 years. Age related slowing in motor and cognitive

performance is suggested to increase dramatically from 60 years

[27,28]. In this study, we compared the performance of adults

below this threshold, assuming motor and cognitive skills to be

unimpaired.

Eye Movement Metrics in Action Related States
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Task
Participants performed a modified version of the Virtual Radial

Fitts’ Task (VRT) previously employed by others [29,30]. The task

was completed in four conditions: (i) AE; (ii) AO; (iii) GMI; and (iv)

UGMI. Participants sat at a table, screened on three sides to

occlude task-irrelevant environmental stimuli, and performed a

drawing task using a larger touchscreen tablet (ST2220T, Dell UK

Inc.) and a hand held stylus (normal pen size and weight) with a

thin white tip. On touching the tablet the pen’s movement left a

momentary digital trace. During all tasks a HOME and FINISH

button was presented on the touchscreen and in AE, AO and GMI

(but not UGMI) a TARGET was also present (see Figure 1). The

HOME button was presented at a distance of 200 mm away from

the participant’s torso (midline). The TARGET was aligned with

the HOME button and the amplitude between the closest edges of

the HOME and TARGET was constant (185 mm). To vary the

complexity of the task three different sized square targets were

used; small (4 mm2), medium (9 mm2) and large (20 mm2).

In the AE, GMI and UGMI conditions the participants were

required to tap the HOME button as soon as it was presented.

Participants then either moved the stylus physically to the

TARGET and back to HOME (AE, see Figure 1) or imagined

the action without any concomitant movement (GMI and UGMI).

In UGMI participants had to imagine both the TARGET position

and size. Upon completion of the movement (either overtly or

covertly) participants then tapped the FINISH button with the

pen. The MT, the time from when the stylus left the HOME

button until it tapped the FINISH button, was measured in AE,

GMI and UGMI. In AO, the arm was placed outside of a slightly

adjusted privacy screen to control for duplication of visual stimuli.

In this condition participants observed a recording of their own

AE, presented back as a video clip (see apparatus). In all conditions

the torso, arm, hand and stylus remained in a similar position.

To ensure a maximally homogeneous task across all participants

and conditions the following specific instructions were explained

and repeated at the start of each block of trials. In the AE

condition, participants were asked to move the stylus as accurately

and as quickly as possible. In the GMI and UGMI conditions,

participants were instructed to image the task from a first person

egocentric visual orientation and to employ both visual and

kinaesthetic imagery modalities. The task was to be executed in

the same manner as previously performed. Participants were

provided with generic stimulus and response propositional

instructions [31] associated with the task: ‘‘see yourself accurately

reach the square target, as if you were actually performing the

movement’’ and ‘‘feel your grip on the stylus, feel the muscles in

your upper arm contract, feel your arm extend as you perform the

movement’’. In the observation condition, the participants were

instructed to ‘‘observe the action with the intention to imitate it at

a later time’’. In all covert conditions participants were requested

to make no physical upper limb movement.

A control condition was included to ensure that the gaze metrics

in the simulation conditions were task related. Participants sat at

the desk holding the stylus and were instructed to count back

slowly from 100; no other task instructions were given. During this

time the TARGET, HOME and FINISH buttons were presented

on the touchscreen and eye movements were collected. After 50 s

(a time equivalent to that spent performing the tasks in AE) the

participants were informed the task was complete and were asked

to rest.

Apparatus
The touchscreen and stylus were calibrated pre-experiment.

The stylus movements were recorded at 50 Hz using DMDX [32].

The touchscreen had a spatial accuracy 62.5 mm, over 95% of

touchable area and a typical response time of 15 ms.

Eye movements were recorded with the Applied Science

Laboratories Mobile Eye system (ASL; Bedford, Massachusetts)

at a sampling rate of 30 Hz. The system has an accuracy of 0.5u of
visual angle, a resolution of 0.10u of visual angle, and a visual

range of 50u horizontal and 40u vertical. A laptop (Lenovo T500

ThinkPad) installed with ‘Eyevision’ (ASL) recording software was

incorporated with the system. The experimenter and laptop were

positioned to the right of the privacy screen to minimize visual

distraction during all conditions.

The Mobile Eye was calibrated prior to each block of tasks using

a 9-point grid presented on the touchscreen. A chin rest was used

to restrict head movements and participants were requested to

limit both head movements and speech during the experiment.

These controls enabled optimal collection of gaze metrics. The eye

movement data was analysed using Gazetracker software [33]. As

the task consisted of a simple arm extension/flexion movement in

the sagittal plane, only vertical gaze was analysed. Pilot testing of

the task revealed no significant horizontal eye movements. A

fixation was defined as a stable gaze position (i.e., within 0.67u
visual angle) that was maintained for at least 120 ms. ‘Look-zones’,

areas equivalent to the target size plus a tolerance: small = 8 mm2;

medium=7 mm2; large = 6 mm2, were determined during pilot

testing and reflected the area most heavily populated by fixations

during the current control phase of the physical movement. The

tolerance accommodated for drift, compressions, expansions and

individual gaze behaviour preference [34]. Individual look-zones

were overlaid onto each target during post processing and all

fixations within these zones were considered to be task related. A

similar method of spatially comparing fixations between simula-

tion states has been employed by others [34,35].

To maintain strict intra-individual congruency across all

conditions, each participant’s AE trials were filmed using a Sony

High Definition Handycam (HDR-HC7E). The camera was

positioned directly above the participant and 186 cm from the

floor. The filming process was not explained to the participants

until after the final debrief session. It was covertly operated during

AE with a remote device. The personalized videos were then

replayed in the participant’s AO trials.

Figure 1. Forward reach and point task. In the action execution
task the participants moved the stylus accurately and rapidly from the
HOME button to the target, back to HOME and then to FINISH.
doi:10.1371/journal.pone.0067761.g001
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Experimental Procedure
The imagery ability of each participant was assessed using the

Movement Imagery Questionnaire Revised (MIQ-RS) [36]. The

MIQ-RS comprises 14 imagery items; seven visual (VIS) and seven

kinaesthetic (KIN). Ease of imagining ratings for each item on the

MIQ-RS are selected from a 7-point Likert-type scale where

1 = very hard to see/feel and 7= very easy to see/feel. Possible

scores therefore range from 14 ( = extremely poor imager) to 98

( = extremely good imager) for the combined modalities.

Following imagery assessment, participants performed a single

habituation block of the VRT using a target that was a different

size (15 mm2) to the experimental tasks. Participants were then

assigned to one of three series defined by target size (small,

medium, large). Each series began with one block of AE, followed

by one block of each of the other conditions (i.e., AO, GMI,

UGMI and Control, counterbalanced). Preceding the covert

conditions with AE was a necessity to maintain equivalent self-

referent representations based on stored memories of a prescribed

task [37]. Each block consisted of eleven repetitions of the task

followed by a 2 minute rest. The first trial in each block was

discarded since pilot testing revealed MT in this trial to be more

variable. Excluding the control condition, which was analysed at a

block level, 120 trials were analysed for each participant: 10 (tasks

per block)64 (conditions)63 (target size). At the end of the trials

each participant was debriefed fully and completed a self-rated

evaluation of their visual and kinaesthetic performance during AO

and MI. An in-house questionnaire, using a 7-point Likert-type

scale (similar to the MIQ-RS), was used to rate the ease/difficulty

associated with their visual and kinaesthetic performance (in the

GMI and UGMI conditions) and their active visual engagement

and kinesthesis (in AO).

Dependent Variables
Chronometry measures. Performance on the VRT was

measured by comparing each participant’s mean MT. The AO

condition was excluded from this analysis as no MT data was

recorded. If effective MI was performed MT would be comparable

between MI and AE and both GMI and UGMI conditions would

be influenced by task complexity.

Number of fixations. The total number of fixations inside

the look-zones (per block of ten trials) was calculated and

compared between conditions. Based on the work of Flanagan

and Johansson [19], no significant difference in the number of

fixations to the target zone would indicate the execution of a

similar visual, but not necessarily motor, strategy between

conditions. In addition, repeated fixations at the target would

provide a measure of participants’ engagement in the covert tasks

[38]. The control condition was also included in this analysis. The

fixations in this condition were expected to be epiphenomenal

rather than functional, and significantly different to that of the

simulation conditions [38].

Fixation duration. The total fixation duration at the target

(per block of ten trials) was computed for each participant and

compared between conditions. Comparable values for fixation

duration, that were similarly influenced by task complexity, would

provide evidence of a shared eye motor program directed by the

motor representation for a reach and point action [19].

Imagery ability and manipulation checks. The scores of

the MIQ-RS were calculated to ensure that all participants

presented with at least average MI ability. The manipulation

checks were used to confirm appropriate participant compliance in

all covert tasks.

Statistical Analyses
All values deviating more than two standard deviations from the

mean were removed. The Shapiro-Wilks and Levene’s test were

used to identify normal distribution and equivalent variance.

Sphericity was assumed if Mauchly’s test of sphericity was .0.05.

Effect sizes were calculated using partial eta squared values (gp
2)

and the alpha level for significance was set at 0.05. Pairwise

comparisons were LSD corrected. All data are presented as means

and Greenhouse-Geisser corrected.

Results

Chronometry Measures
To confirm participant task compliance, MT was recorded and

compared using a 3 (condition: AE, GMI, UGMI)63 (target size:

small, medium, large) repeated measures (RM) ANOVA. Main

effects were found for condition (F1.403, 16.831 = 9.338, p=0.004,

gp
2 = 0.438, and target size (F2, 24 = 3.793, p=0.037, gp

2 = 0.240).

There were no significant interactions. Pairwise comparisons

revealed MT was significantly quicker in AE (2.681 s) when

compared to GMI (3.106 s, p=0.046) and UGMI (3.460 s,

p=0.004). MT was also significantly quicker in GMI compared

to UGMI (p=0.008). For target size, MT was significantly quicker

for the large target (2.943 s) compared to the small target (3.207 s,

p=0.028) across all conditions. There was no significant difference

between the large and medium targets (3.097 s, p=0.140) or

between the medium and small targets (p=0.215).

Total Number of Fixations
A 5 (condition: AE, AO, GMI, UGMI, Control)63 (target size:

small, medium, large) RM ANOVA was used to compare the total

number of fixations at the target zone. A main effect was found for

condition (F4, 48 = 21.401, p,0.001 gp
2 = 0.641, but not for size

(F2,24 = 1.527, p=0.113) and there were no interactions. Pairwise

comparisons revealed that significantly more fixations were made

during AE (15) compared to all other simulation conditions; AO

(12, p=0.006), GMI (12, p=0.003), and UGMI (12, p=0.018).

There were no significant differences between the covert

conditions (see Figure 2).

A control condition was included in this analysis to confirm that

the fixations in the target zone were task related. Significantly

fewer fixations (5, p,0.001) were observed during Control

compared to AE, AO, and GMI and UGMI. In addition, the

number of fixations in this condition was highly variable as

reflected in the large standard deviations (large target 766,

medium target 564, small target 465).

Total Fixation Duration
A 4 (condition: AE, AO, GMI, UGMI)63 (size: small, medium,

large) RM ANOVA was used to compare total fixation duration.

A main effect of size (F2, 24 = 4.204, p=0.027, gp
2 = 0.259), but

not condition (F1.603, 19.239 = 1.656, p=0.194, was observed.

There was also a significant size by condition interaction (F6,

72 = 2.227, p=0.050, gp
2 = 0.157), see Figure 3. Simple effect

analyses revealed that in AE and AO total fixation duration was

significantly shorter for the large target size compared to the small

target size (AE, 8.692 s vs 10.815 s, p=0.005; AO, 7.447 vs

10.212 s, p=0.001) and for the large target size compared to the

medium target size (AE, 8.692 s vs 10.210 s, p=0.002; AO,

7.447 s vs 9.115 s, p=0.054). All other comparisons were not

significant.

Eye Movement Metrics in Action Related States
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Imagery Ability
Participants completed the MIQ-RS to assess ease of imagery

generation ability. All participants rated their ability as at least

average. Mean scores of 33.8269.42 (VIS) and 34.0968.56 (KIN)

were recorded. Manipulation checks were performed post

experiment to examine participants’ MI and AO experiences.

For MI, mean scores (based on the reach and point task only)

revealed that the visual component of the imagery was considered

at least ‘‘somewhat easy to see’’ (GMI= 5.5461.13,

UGMI= 5.4761.98). Kinesthetic imagery was rated as ‘‘somewhat

hard to feel’’ (GMI= 3.5461.11, UGMI=3.0861.98). For AO,

mean scores revealed that the visual component of the AO was

considered at least ‘‘very easy to actively engage with’’ (6.7760.60). The

kinesthesis associate with AO was rated as ‘‘very hard to feel’’

(1.4662.82).

Discussion

The current study explored eye gaze behaviour across four

experimental conditions using a forward reach and point Fitts’

Task. Our hypotheses were partially supported; (1) MT was not

strictly congruent between AE, GMI and UGMI conditions, but

was similarly influenced by target size across all conditions; (2) the

number of target fixations was significantly different between AE

and all covert conditions but all conditions were similarly

influenced by target size; (3) total target fixation duration remained

congruent in AE and AO and both conditions displayed an

indirect Fitts’ Law effect. The findings suggest there are similarities

in the fixation metrics and also some specific differences.

Therefore, these data provide partial support for the common

representation hypothesis and, for the first time, through eye

movement metrics. The discussion is organised by dependent

variables.

Equivalence in Chronometry Measures
The time required to physically perform and imagine a reach

and point task was compared in three levels of task difficulty. In

agreement with others [8,39], MT was significantly quicker in AE

compared to GMI and UGMI conditions. Decety et al. [8]

reasoned that increased force (effort) in AE (required to maintain

similar levels of performance in more effortful tasks), is interpreted

as increased MT in imagery (of the same task). In the current

study, the participants were asked to perform all tasks optimally,

i.e. to focus on both speed and accuracy. We suggest that increased

effort was required to decelerate the limb and place it accurately

and quickly at the medium and small targets during the current

control phase of the movement [40,41]. This increase in effort

could have been interpreted as an increase in time during imagery.

We also observed that MT was significantly longer in UGMI than

GMI. Kosslyn [42] suggests that additional time is required in

visual imagery when the tasks are more complex. Our data

support this idea given that the UGMI condition required

participants to generate and inspect additional images (i.e. the

target).

Some researchers have argued that overestimated time in

imagined movement can occur because tacit knowledge is used

instead of imagery [43,44]. For example, the participant may

count internally to direct the behaviour in an attempt to match the

MT. If the participants had used tacit knowledge in the current

study, MT should have been similar in both GMI and UGMI

conditions. This was not observed since MT in GMI was

significantly quicker compared to UGMI.

Fitts’ Law has been demonstrated to constrain MI in a similar

manner to AE [8,39]. In support of the findings of Maruff et al.

[39], we found that MT for both physical and imagined conditions

was significantly greater for the small, more complex target task

compared to the medium and large, less complex target tasks. This

data provides further support for the theory of a common motor

representation that is accessed during MI and physical execution.

In addition, the data confirm participants’ engagement in both MI

tasks.

Number of Fixations
The control condition data demonstrated that the fixations

performed during the task were functional rather than epiphe-

nomenal. Participants demonstrated a variable eye movement

pattern in this condition (evidenced through the large standard

deviations) that was inconsistent with the other experimental

conditions. This provided confidence that the eye movements were

task related in AE, AO, GMI and UGMI conditions.

Figure 2. Fixations at the target look-zone. Total number of fixations at the target look-zone during all 10 trials, for all series and conditions.
doi:10.1371/journal.pone.0067761.g002
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There were significantly more fixations in AE compared to the

covert conditions. The goal of the task was to point to a target as

accurately and quickly as possible, in AE this included the

coupling of two effectors, the limb and the eyes. During the AE of

a pointing task an individual will typically produce anticipatory

saccades to the target site before the limb arrives and remain there

until the task is complete [31]. Online comparison of the

feedforward efferent motor command with visual and proprio-

ceptive afferent feedback occurs to place the limb accurately at the

target. If the placement of the first fixation provides incorrect or

insufficient information, a corrective saccade and subsequent

fixation occurs [40]. In contrast to AE, in the covert conditions no

additional fixations related to error correction of the limb

trajectory were required and hence the number of fixations was

less in this conditions. The results contradict those of Heremans

et al. [18], who reported no significant difference in the number of

fixations between AE and visually assisted MI, this may be due to

differences in task complexity. In the Heremans et al. study, the

relatively simple task involved a controlled cyclic wrist extension/

flexion movement, whereas in the current study participants

optimally performed (i.e. considered speed and accuracy) a gross

motor movement. Our findings highlight the fact that the neural

overlap between conditions is not complete. For this metric, the

covert conditions have no need, or appear unable, to simulate the

fine adjustment of the motor program that occurs in tasks that are

guided by afferent feedback and sensory expectation.

The number of fixations in the target zone in UGMI condition

was consistent with the other more visually assisted conditions.

During object related perception, spatial information is encoded in

a spatial index associated with eye movements. It is suggested that

later access to the stored representation, either during memory

retrieval or imagery, can be achieved by re-executing the same eye

Figure 3. Fixation duration. Total dwell time at target during all 10 trials, for all series and conditions.
doi:10.1371/journal.pone.0067761.g003
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movements [38,45,46]. In the current study, the UGMI condition

provided no task relevant information except the stationary limb

and the HOME button. Jeannerod proposed that in visuomotor

tasks the motor program in permanently fed with information

from two sources, conceptualised as a visual map and a

proprioceptive map [47]. The visual map encodes the position

of the target with respect to the body using retinal information; the

proprioceptive map encodes the static and dynamic proprioceptive

signals from the limb. It is therefore possible that the stationary

limb provided the motor program with the necessary inputs to be

able to re-execute the accurate landing position of the target

fixation.

In agreement with others [38,40], the number of fixations to the

target was not influenced by task complexity (i.e. target width).

The physical execution of simple aiming tasks typically requires no

more than two fixations at the target in order to determine the

target’s location in the visuomotor work space [40]. A comparable

fixation pattern was observed in this study and implies that the

target location was optimally determined in all conditions. This

suggests that in overt and covert conditions the number of fixations

remains relatively robust to changes in task complexity and

provides further evidence of a shared motor program.

Total Fixation Duration
Fixation duration is reported to consist of three processes: visual

field sampling, analysis of foveal information, and planning of the

next saccade [48]. In the current study, visual field sampling was

controlled using a privacy screen, and planning of the next

saccade, after target acquisition, was controlled with the HOME

button that was constant across trials. Consequently, it was

inferred that any difference in fixation duration was due to the

analysis of foveal information. In AE and AO, the fixation

duration was significantly influenced by target size; fixation

duration was longer for the small compared to the large target.

These data indicate that visual processing increased as a function

of task complexity for these conditions only.

Some authors [49–51] suggest the scaling of the MT by task

complexity is an emergent process; crude motor plans are formed

during action preparation and continually updated during action

performance. The online modulation of the motor output is

achieved via the posterior parietal cortex that acts as a ‘neural

comparator’, comparing eye signals (retinal and extra-retinal) to

proprioceptive and efferent copy signals. In the current study,

fixation duration was influenced by task complexity in AE and

AO, but not in GMI or UGMI. This suggests that the amount of

visual processing is also an emergent process. We propose that the

internal, top down model used in imagery is sufficient to generate

crude motor plans (the MT was significantly different to AE but

similarly influenced by task complexity) but is unable to simulate

the dynamic feedback conditions. In contrast, the similar and

dynamic behaviour of fixation duration in AE and AO suggests the

activation of an enhanced, dynamic motor program that is shared

by both conditions.

Other temporal fixation markers (e.g. the time between

successive fixations), are also reported to demonstrate no effect

of task complexity in cyclic aiming tasks [18]. Combined with our

results, these findings suggest that the sub-components of aiming

tasks are processed differently in GMI and UGMI compared to

AE and AO. These data corroborate the findings of Calmels et al.

[52] who reported that elite gymnasts, with medium – high

imagery ability, imagined a complex gymnastic routine in a

temporally different format to that displayed in physical perfor-

mance.

The lack of a main effect in fixation duration between

conditions (with the target complexity data collapsed) appears to

contrast with the findings of others [20]. McCormick et al. [20]

reported fixation duration to be significantly longer in AO

compared to MI conditions. These differences can be reconciled

if the task designs are considered. In the McCormick et al. study,

MT was fixed between the AO and MI conditions. In the present

study, MT was self-determined during the MI conditions and

shown to be significantly longer than AE (and by extension AO,

since AO included the video recording of AE). Therefore, in

agreement with McCormick et al., this suggests the time spent

fixating in MI, relative to MT, was less than the time spent fixating

in AE and AO, relative to MT.

Imagery Ability and Manipulation Checks
All participants were initially assessed as having at least average

kinaesthetic and visual imagery skills. The manipulation checks

revealed that participants found the visual kinaesthetic component

of the imagery more difficult to perform than the visual

component. The ability to maintain the temporal preservation of

the organization of movement during MI has been taken as

evidence of kinaesthetic imagery [53]. It is possible that the

overestimation of MT is indicative of the sub-optimal kinaesthetic

imagery performances. In contrast, the preservation of spatial

information in imagery, evidenced through repeated fixations in

the target zone, corroborates the above average scores recorded

for visual imagery.

The manipulation checks for AO suggest participants found it

easier to engage in this task, compared to the MI tasks. In this

condition no instructions to ‘feel’ the movement were issued and

the low scores for kinesthesis suggest participant compliance.

Thus, it appears that the temporal preservation of the movement

in AO, as evidenced through fixation duration, is achieved via

mechanisms other than kinesthesis. This could be an eye motor

program that is shared in AE and AO.

Conclusion
In this study, we used a single experimental paradigm and

measured eye movements to test the predictions of Jeannerod’s

simulation hypothesis [54]. All participants fixated the target look-

zone, indicating that similar information was attended to across

conditions. Fixation duration was influenced by task complexity in

AE and AO only. This suggests that dynamic manipulation of the

motor representation in response to task constraints occurs

similarly in AE and AO but not MI. As such, AO may be a

more effective technique in supporting complex motor processes.

The close similarity between AE and AO may support the use of

AO as a prime to MI, if chronic immobility has compromised

effective physical movement (e.g., stroke). This research highlights

the importance of considering the dynamic nature of the motor

representation and its influence on behaviour in the covert

conditions.
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