477 research outputs found

    Comparison of an X-ray selected sample of massive lensing clusters with the MareNostrum Universe LCDM simulation

    Full text link
    A long-standing problem of strong lensing by galaxy clusters regards the observed high rate of giant gravitational arcs as compared to the predictions in the framework of the "standard" cosmological model. Recently, few other inconsistencies between theoretical expectations and observations have been claimed which regard the large size of the Einstein rings and the high concentrations of few clusters with strong lensing features. All of these problems consistently indicate that observed galaxy clusters may be gravitational lenses stronger than expected. We use clusters extracted from the MareNostrum Universe to build up mock catalogs of galaxy clusters selected through their X-ray flux. We use these objects to estimate the probability distributions of lensing cross sections, Einstein rings, and concentrations for the sample of 12 MACS clusters at z>0.5z>0.5 presented in Ebeling et al. (2007) and discussed in Zitrin et al. (2010). We find that simulated clusters produce 50\sim 50% less arcs than observed clusters do. The medians of the distributions of the Einstein ring sizes differ by 25\sim 25% between simulations and observations. We estimate that, due to cluster triaxiality and orientation biases affecting the lenses with the largest cross sections, the concentrations of the individual MACS clusters inferred from the lensing analysis should be up to a factor of 2\sim 2 larger than expected from the Λ\LambdaCDM model. The arc statistics, the Einstein ring, and the concentration problems in strong lensing clusters are mitigated but not solved on the basis of our analysis. Nevertheless, due to the lack of redshifts for most of the multiple image systems used for modeling the MACS clusters, the results of this work will need to be verified with additional data. The upcoming CLASH program will provide an ideal sample for extending our comparison (abridged).Comment: 11 pages, 9 figures, accepted for publication on A&

    Hubble Frontier Field Free-Form Mass Mapping of the Massive Multiple-Merging Cluster MACSJ0717.5+3745

    Get PDF
    We examine the latest data on the cluster MACSJ0717.5+3745 from the Hubble Frontier Fields campaign. The critically lensed area is the largest known of any lens and very irregular making it a challenge for parametric modelling. Using our Free-Form method we obtain an accurate solution, identify here many new sets of multiple images, doubling the number of constraints and improving the reconstruction of the dark matter distribution. Our reconstructed mass map shows several distinct central substructures with shallow density profiles, clarifying earlier work and defining well the relation between the dark matter distribution and the luminous and X-ray peaks within the critically lensed region. Using our free-form method, we are able to meaningfully subtract the mass contribution from cluster members to the deflection field to trace the smoothly distributed cluster dark matter distribution. We find 4 distinct concentrations, 3 of which are coincident with the luminous matter. The fourth peak has a significant offset from both the closest luminous and X-ray peaks. These findings, together with dynamical data from the motions of galaxies and gas will be important for uncovering the potentially important implications of this extremely massive and intriguing system.Comment: 16 pages, 10 figures, 2 tables. Matches the verson submitted to mnras. New table (A2) included with additional system candidate

    Multiple Images of a Highly Magnified Supernova Formed by an Early-Type Cluster Galaxy Lens

    Get PDF
    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster’s gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses

    Free-form lens model and mass estimation of the high redshift galaxy cluster ACT-CL J0102-4915, "El Gordo"

    Full text link
    We examine the massive colliding cluster El Gordo, one of the most massive clusters at high redshift. We use a free-form lensing reconstruction method that avoids making assumptions about the mass distribution. We use data from the RELICS program and identify new multiply lensed system candidates. The new set of constraints and free-form method provides a new independent mass estimate of this intriguing colliding cluster. Our results are found to be consistent with earlier parametric models, indirectly confirming the assumptions made in earlier work. By fitting a double gNFW profile to the lens model, and extrapolating to the virial radius, we infer a total mass for the cluster of M200c=(1.080.12+0.65)×1015M_{200c}=(1.08^{+0.65}_{-0.12})\times10^{15}M_{\odot}. We estimate the uncertainty in the mass due to errors in the photometric redshifts, and discuss the uncertainty in the inferred virial mass due to the extrapolation from the lens model. We also find in our lens map a mass overdensity corresponding to the large cometary tail of hot gas, reinforcing its interpretation as a large tidal feature predicted by hydrodynamical simulations that mimic El Gordo. Finally, we discuss the observed relation between the plasma and the mass map, finding that the peak in the projected mass map may be associated with a large concentration of colder gas, exhibiting possible star formation. El Gordo is one of the first clusters that will be observed with JWST, which is expected to unveil new high redshift lensed galaxies around this interesting cluster, and provide a more accurate estimation of its mass.Comment: 19 pages, 10 figures. Updated figure

    CLASH: Extending Galaxy Strong Lensing to Small Physical Scales with Distant Sources Highly Magnified by Galaxy Cluster Members

    Get PDF
    We present a complex strong lensing system in which a double source is imaged five times by two early-type galaxies. We take advantage in this target of the extraordinary multi-band photometric data set obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program, complemented by the spectroscopic measurements of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift value of 3.7 for the source and confirm spectroscopically the membership of the two lenses to the galaxy cluster MACS J1206.2–0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to model the two lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersion values of 97 ± 3 and 240 ± 6 km s^(–1). Interestingly, the total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, which is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of approximately (1.0 ± 0.5) × 10^9 M☉ (assuming a Salpeter stellar initial mass function). By combining the total and luminous mass estimates of the two lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 ± 0.21 and 0.80 ± 0.32. Remarkably, with these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are approximately two and three times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales, like massive early-type galaxies and dwarf spheroidals, reveals the potential of studies of this kind for improving our knowledge about the internal structure of galaxies. These studies, made possible thanks to the CLASH survey, will allow us to go beyond the current limits posed by the available lens samples in the field

    CLASH-VLT: Insights on the Mass Substructures in the Frontier Fields Cluster MACS J0416.1–2403 through Accurate Strong Lens Modeling

    Get PDF
    We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the Cluster Lensing And Supernova survey with Hubble (CLASH) and Frontier Fields galaxy cluster MACS J0416.1–2403. We show and employ our extensive spectroscopic data set taken with the VIsible Multi-Object Spectrograph instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log (M_*/M_☉) ≃ 8.6. We reproduce the measured positions of a set of 30 multiple images with a remarkable median offset of only 0."3 by means of a comprehensive strong lensing model comprised of two cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components, parameterized with dual pseudo-isothermal total mass profiles. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ~5%, including the systematic uncertainties estimated from six distinct mass models. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological N-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1–2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide intriguing tests of the assumed collisionless, cold nature of dark matter and of the role played by baryons in the process of structure formation

    A Free-Form Prediction for the Reappearance of Supernova Refsdal in the Hubble Frontier Fields Cluster MACSJ1149.5+2223

    Get PDF
    The massive cluster MACSJ1149.5+2223(z=0.544) displays five very large lensed images of a well resolved spiral galaxy at zspect=1.491z_{\rm spect}=1.491. It is within one of these images that the first example of a multiply-lensed supernova has been detected recently as part of the Grism Lens-Amplified Survey from Space. The depth of this data also reveals many HII regions within the lensed spiral galaxy which we identify between the five counter-images. Here we expand the capability of our free-form method to incorporate these HII regions locally, with other reliable lensed galaxies added for a global solution. This improved accuracy allows us to estimate when the Refsdal supernova will appear within the other lensed images of the spiral galaxy to an accuracy of \sim 7\%. We predict this supernova will reappear in one of the counter-images (RA=11:49:36.025, DEC=+22:23:48.11, J2000) and on November 1st^{st} 2015 (with an estimated error of ±\pm 25 days) it will be at the same phase as it was when it was originally discovered, offering a unique opportunity to study the early phases of this supernova and to examine the consistency of the mass model and the cosmological model that have an impact on the time delay prediction.Comment: 12 images, 11 pages. Mateches accepted version in MNRAS. MNRAS in pres

    A lensed protocluster candidate at z=7.66z=7.66 identified in JWST observations of the galaxy cluster SMACS0723-7327

    Full text link
    According to the current paradigm of galaxy formation, the first galaxies have been likely formed within large dark matter haloes. The fragmentation of these massive haloes led to the formation of galaxy protoclusters, which are usually composed of one to a few bright objects, surrounded by numerous fainter (and less massive) galaxies. These early structures could have played a major role in reionising the neutral hydrogen within the first billion years of the Universe; especially, if their number density is significant.Taking advantage of the unprecedented sensitivity reached by the \textit{James Webb Space Telescope (JWST)}, galaxy protoclusters can now be identified and studied in increasing numbers beyond z z\geq\ 6. Characterising their contribution to the UV photon budget could supply new insights into the reionisation process. We analyse the first JWST dataset behind SMACS0723-7327 to search for protoclusters at z6z\geq6, combining the available spectroscopic and photometric data. We then compare our findings with semi-analytical models and simulations. In addition to two bright galaxies (\leq26.5 AB in F277W), separated by \sim11\arcsec and spectroscopically confirmed at zspec=7.66z_{spec}=7.66, we identify 6 additional galaxies with similar colors in a θ20\theta\sim20\arcsec radius around these (corresponding to R6090\sim60-90 kpc in the source plane). Using several methods, we estimate the mass of the dark matter halo of this protocluster, \sim3.3×\times1011^{11}M_{\odot} accounting for magnification, consistent with various predictions. The physical properties of all protocluster members are also in excellent agreement with what has been previously found at lower redshifts: star-formation main sequence and protocluster size. This detection adds to just a few protoclusters currently known in the first billion years of the universe.Comment: 7 pages, 6 Figures. Accepted for publication in A&A Lette

    The Cluster Lensing and Supernova Survey with Hubble (CLASH): Strong Lensing Analysis of Abell 383 from 16-Band HST WFC3/ACS Imaging

    Get PDF
    We examine the inner mass distribution of the relaxed galaxy cluster Abell 383 in deep 16-band HST/ACS+WFC3 imaging taken as part of the CLASH multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage to better identify lensed systems and generate precise photometric redshifts. This information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply-lensed images and candidates, so that a total of 27 multiple-images of 9 systems are used to tightly constrain the inner mass profile, dlogΣ/dlogr0.6±0.1d\log \Sigma/d\log r\simeq -0.6\pm 0.1 (r<160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01<z<6.03, with the higher redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap. The overall mass profile is well fitted by an NFW profile with M_{vir}=(5.37^{+0.70}_{-0.63}\pm 0.26) x 10^{14}M_{\odot}/h and a relatively high concentration, c_{vir}=8.77^{+0.44}_{-0.42}\pm 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of Abell 383 is modest by the standards of other lensing clusters, r_{E}\simeq16\pm2\arcsec (for z_s=2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25 clusters, 20 of which are X-ray selected relaxed clusters, enabling a precise determination of the representative mass profile free from lensing bias. (ABRIDGED)Comment: 15 pages, 14 figures, 2 tabels; V3 matches the submitted version later published in Ap
    corecore