4 research outputs found

    Adaptive preconditioning in neurological diseases -­ therapeutic insights from proteostatic perturbations

    Get PDF
    International audienceIn neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson´s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses - and the molecular pathways they recruit - might be exploited for therapeutic gai

    Relationship between oxidative stability and antioxidant activity of oil extracted from the peel of Mauritia flexuosa fruits

    No full text
    Mauritia flexuosa is a species of palm belonging to the Arecaceae family that grows in extensive area along north-central Brazil, Colombia and Venezuela. The by-products of these fruits like the oil are of great economic and social importance in all countries where it grows; the oil extracted from fruits of M. flexuosa is used for cooking and is rich in monounsaturated fatty acids and natural antioxidants; and also, recently antiplatelet activity was reported. In order to better understand the thermal behavior and the antioxidant capacity of the oil extracted from the peel of M. flexuosa, the lipid profile, TG/DTG curve (under oxygen atmospheres), total phenolic content and the antioxidant activity were determined. The TG curve of the oil extracted from the peel of M. flexuosa showed a mass loss at a temperature ranging between 200 and 600 °C. The bigger decomposition step occurred in the temperature range of 200–420 °C, showing a similar thermal behavior than the canola and olive oils. Nevertheless, the studied oil showed a higher phenolic content at a degradation onset temperature (T 0) than the other oils, and this is due to the structural characteristics of the polyphenols that have these oils. The antioxidant activity of the different oils by the DPPH radical scavenging method showed that there is a direct correlation between phenol contents and antioxidant activities of the oils. This study shows the importance of the M. flexuosa oil obtained from the peel as a potential source of natural antioxidants
    corecore