1,046 research outputs found

    Malnutrition and bilateral central retinal vein occlusion in a young woman: a case report

    Get PDF
    Introduction: Can vitamin B12 and folate deficiency cause central retinal vein occlusion? We conducted a literature search to find out whether nutritional deficiency of vitamin B12 and folate can lead to impaired vision. Case presentation: The patient in the article presented in an eye-casualty department in the North East of England with gradual painless visual loss over six weeks. She was found to have bilateral central retinal vein occlusion with significant anaemia and vitamin B12 and folate deficiency. Conclusion: Vitamin B12 and folate deficiency can lead to elevated levels of homocysteine. We found a large amount of published data relating central retinal vein occlusion to elevated homocysteine levels, but there was a lack of conclusive evidence for this association Patients should be asked about their dietary history where a thrombotic event is suspected or confirmed

    An electron jet pump: The Venturi effect of a Fermi liquid

    Get PDF
    A three-terminal device based on a two-dimensional electron system is investigated in the regime of non-equilibrium transport. Excited electrons scatter with the cold Fermi sea and transfer energy and momentum to other electrons. A geometry analogous to a water jet pump is used to create a jet pump for electrons. Because of its phenomenological similarity we name the observed behavior "electronic Venturi effect".Comment: Journal of Applied Physics Special Topic: Plenary and Invited Papers from the 30th International Conference on the Physics of Semiconductors, Seoul, Korea, 2010; http://link.aip.org/link/?JAP/109/10241

    Relaxation of hot electrons in a degenerate two-dimensional electron system: transition to one-dimensional scattering

    Full text link
    The energy relaxation channels of hot electrons far from thermal equilibrium in a degenerate two-dimensional electron system are investigated in transport experiments in a mesoscopic three-terminal device. We observe a transition from two dimensions at zero magnetic field to quasi--one-dimensional scattering of the hot electrons in a strong magnetic field. In the two-dimensional case electron-electron scattering is the dominant relaxation mechanism, while the emission of optical phonons becomes more and more important as the magnetic field is increased. The observation of up to 11 optical phonons emitted per hot electron allows us to determine the onset energy of LO phonons in GaAs at cryogenic temperatures with a high precision, \eph=36.0\pm0.1\,meV. Numerical calculations of electron-electron scattering and the emission of optical phonons underline our interpretation in terms of a transition to one-dimensional dynamics.Comment: 15 pages, 9 figure

    Quantum interference and phonon-mediated back-action in lateral quantum dot circuits

    Full text link
    Spin qubits have been successfully realized in electrostatically defined, lateral few-electron quantum dot circuits. Qubit readout typically involves spin to charge information conversion, followed by a charge measurement made using a nearby biased quantum point contact. It is critical to understand the back-action disturbances resulting from such a measurement approach. Previous studies have indicated that quantum point contact detectors emit phonons which are then absorbed by nearby qubits. We report here the observation of a pronounced back-action effect in multiple dot circuits where the absorption of detector-generated phonons is strongly modified by a quantum interference effect, and show that the phenomenon is well described by a theory incorporating both the quantum point contact and coherent phonon absorption. Our combined experimental and theoretical results suggest strategies to suppress back-action during the qubit readout procedure.Comment: 25 pages, 8 figure

    Magneto-electrical subbands of freely suspended quantum point contacts

    Full text link
    We present a versatile design of freely suspended quantum point contacts with particular large one-dimensional subband quantization energies of up to 10meV. The nanoscale bridges embedding a two-dimensional electron system are fabricated from AlGaAs/GaAs heterostructures by electron-beam lithography and etching techniques. Narrow constrictions define quantum point contacts that are capacitively controlled via local in-plane side gates. Employing transport spectroscopy, we investigate the transition from electrostatic subbands to Landau-quantization in a perpendicular magnetic field. The large subband quantization energies allow us to utilize a wide magnetic field range and thereby observe a large exchange splitted spin-gap of the two lowest Landau-levels

    Direct evidence of ZnO morphology modification via the selective adsorption of ZnO-binding peptides

    Get PDF
    Biomolecule-mediated ZnO synthesis has great potential for the tailoring of ZnO morphology for specific application in biosensors, window materials for display and solar cells, dye-sensitized solar cells (DSSCs), biomedical materials, and photocatalysts due to its specificity and multi-functionality. In this contribution, the effect of a ZnO-binding peptide (ZnO-BP, G-12: GLHVMHKVAPPR) and its GGGC-tagged derivative (GT-16: GLHVMHKVAPPRGGGC) on the growth of ZnO crystals expressing morphologies dependent on the relative growth rates of (0001) and (10 (1) over bar0) planes of ZnO have been studied. The amount of peptide adsorbed was determined by a depletion method using oriented ZnO films grown by Atomic Layer Deposition (ALD), while the adsorption behavior of G-12 and GT-16 was investigated using XPS and a computational approach. Direct evidence was obtained to show that (i) both the ZnO-BP identified by phage display and its GGGC derivative (GT-16) are able to bind to ZnO and modify crystal growth in a molecule and concentration dependent fashion, (ii) plane selectivity for interaction with the (0001) versus the (10 (1) over bar0) crystal planes is greater for GT-16 than G-12; and (iii) specific peptide residues interact with the crystal surface albeit in the presence of charge compensating anions. To our knowledge, this is the first study to provide unambiguous and direct quantitative experimental evidence of the modification of ZnO morphology via (selective and nonselective) adsorption-growth inhibition mechanisms mediated by a ZnO-BP identified from phage display libraries
    corecore