Spin qubits have been successfully realized in electrostatically defined,
lateral few-electron quantum dot circuits. Qubit readout typically involves
spin to charge information conversion, followed by a charge measurement made
using a nearby biased quantum point contact. It is critical to understand the
back-action disturbances resulting from such a measurement approach. Previous
studies have indicated that quantum point contact detectors emit phonons which
are then absorbed by nearby qubits. We report here the observation of a
pronounced back-action effect in multiple dot circuits where the absorption of
detector-generated phonons is strongly modified by a quantum interference
effect, and show that the phenomenon is well described by a theory
incorporating both the quantum point contact and coherent phonon absorption.
Our combined experimental and theoretical results suggest strategies to
suppress back-action during the qubit readout procedure.Comment: 25 pages, 8 figure