421 research outputs found
Wheat-barley hybridization – the last forty years
Abstract Several useful alien gene transfers have
been reported from related species into wheat (Triticum
aestivum), but very few publications have dealt
with the development of wheat/barley (Hordeum
vulgare) introgression lines. An overview is given
here of wheat 9 barley hybridization over the last
forty years, including the development of
wheat 9 barley hybrids, and of addition and translocation
lines with various barley cultivars. A short
summary is also given of the wheat 9 barley hybrids
produced with other Hordeum species. The meiotic
pairing behaviour of wheat 9 barley hybrids is presented,
with special regard to the detection of wheat–
barley homoeologous pairing using the molecular
cytogenetic technique GISH. The effect of in vitro
multiplication on the genome composition of intergeneric
hybrids is discussed, and the production and
characterization of the latest wheat/barley translocation
lines are presented. An overview of the agronomical
traits (b-glucan content, earliness, salt tolerance,
sprouting resistance, etc.) of the newly developed
introgression lines is given. The exploitation and
possible use of wheat/barley introgression lines for
the most up-to-date molecular genetic studies
(transcriptome analysis, sequencing of flow-sorted
chromosomes) are also discussed
IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica
The recent observation by the IceCube neutrino observatory of an
astrophysical flux of neutrinos represents the "first light" in the nascent
field of neutrino astronomy. The observed diffuse neutrino flux seems to
suggest a much larger level of hadronic activity in the non-thermal universe
than previously thought and suggests a rich discovery potential for a larger
neutrino observatory. This document presents a vision for an substantial
expansion of the current IceCube detector, IceCube-Gen2, including the aim of
instrumenting a volume of clear glacial ice at the South
Pole to deliver substantial increases in the astrophysical neutrino sample for
all flavors. A detector of this size would have a rich physics program with the
goal to resolve the sources of these astrophysical neutrinos, discover GZK
neutrinos, and be a leading observatory in future multi-messenger astronomy
programs.Comment: 20 pages, 12 figures. Address correspondence to: E. Blaufuss, F.
Halzen, C. Kopper (Changed to add one missing author, no other changes from
initial version.
A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande
Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW 10 sec integrated proton beam power (corresponding to protons on target with a 30 GeV proton beam) to a -degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the phase can be determined to better than 19 degrees for all possible values of , and violation can be established with a statistical significance of more than () for () of the parameter space
Search for Anisotropy of Ultra-High Energy Cosmic Rays with the Telescope Array Experiment
We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events
collected by the Telescope Array (TA) detector in the first 40 months of
operation. Following earlier studies, we examine event sets with energy
thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the
events in right ascension and declination are compatible with an isotropic
distribution in all three sets. We then compare with previously reported
clustering of the UHECR events at small angular scales. No significant
clustering is found in the TA data. We then check the events with E>57 EeV for
correlations with nearby active galactic nuclei. No significant correlation is
found. Finally, we examine all three sets for correlations with the large-scale
structure of the Universe. We find that the two higher-energy sets are
compatible with both an isotropic distribution and the hypothesis that UHECR
sources follow the matter distribution of the Universe (the LSS hypothesis),
while the event set with E>10 EeV is compatible with isotropy and is not
compatible with the LSS hypothesis at 95% CL unless large deflection angles are
also assumed. We show that accounting for UHECR deflections in a realistic
model of the Galactic magnetic field can make this set compatible with the LSS
hypothesis.Comment: 10 pages, 9 figure
Comprehensive extraction method integrated with NMR metabolomics: a new bioactivity screening method for plants, adenosine A1 receptor binding compounds in Orthosiphon stamineus benth
A large number of plant metabolites has provided as an incomparable chemical source for drug development. However, the wide range of the polarity of metabolites has been a big obstacle for full use of the chemical diversity. The initial step conventional extraction method by a single solvent does not make use of all the metabolites contained in plants. Also, it takes a long time to confirm the target activity of a single compound because of tedious separation steps. To solve the problem, a new extraction method coupled to NMR-based metabolomics is applied to identify bioactive natural products. A comprehensive extraction method consisting of a continuous flow of solvent mixtures through plant material was developed to provide extracts with a wider chemical variety than those yielded with a single solvent extraction. As the model experiment, 1H NMR spectra of the extracts obtained from the comprehensive extraction of Orthosiphon stamineus were subjected to multivariate data analysis to find its adenosine A1 binding activity. On the basis of the results, two flavonoids from a large number of chemicals were clearly verified to show the adenosine A1 binding activity without any further purification steps. This method could provide a solution to the major drawbacks of natural products in drug development
- …