304 research outputs found
The Causal Structure of Emotions in Aristotle: Hylomorphism, Causal Interaction between Mind and Body, and Intentionality
Recently, a strong hylomorphic reading of Aristotelian emotions has been put forward, one that allegedly eliminates the problem of causal interaction between soul and body. Taking the presentation of emotions in de An. I 1 as a starting point and basic thread, but relying also on the discussion of Rh. II, I will argue that this reading only takes into account two of the four causes of emotions, and that, if all four of them
are included into the picture, then a causal interaction of mind and body remains within Aristotelian emotions, independent of how strongly their hylomorphism is understood. Beyond the discussion with this recent reading, the analysis proposed of the fourfold causal structure of emotions is also intended as a hermeneutical starting point for a comprehensive analysis of particular emotions in Aristotle. Through the different causes Aristotle seems to account for many aspects of the complex phenomenon of emotion, including its physiological causes, its mental causes, and its intentional object
Umbral Calculus, Discretization, and Quantum Mechanics on a Lattice
`Umbral calculus' deals with representations of the canonical commutation
relations. We present a short exposition of it and discuss how this calculus
can be used to discretize continuum models and to construct representations of
Lie algebras on a lattice. Related ideas appeared in recent publications and we
show that the examples treated there are special cases of umbral calculus. This
observation then suggests various generalizations of these examples. A special
umbral representation of the canonical commutation relations given in terms of
the position and momentum operator on a lattice is investigated in detail.Comment: 19 pages, Late
Bases anatómicas y fisiológicas relacionadas con la tolerancia a la inundación en plantas de los pastizales de la Pampa Deprimida
Las inundaciones son disturbios naturales frecuentes que afectan el crecimiento de las plantas de los pastizales de la Pampa Deprimida de la provincia de Buenos Aires. En los últimos años se ha ganado conocimiento acerca de cuáles son los rasgos y mecanismos que confieren a especies graminoides, y a algunas especies dicotiledóneas, tolerancia a este disturbio.El documento es un resumen de resultados de proyecto de investigación.Academia Nacional de Agronomía y Veterinari
Bases anatómicas y fisiológicas relacionadas con la tolerancia a la inundación en plantas de los pastizales de la Pampa Deprimida
Las inundaciones son disturbios naturales frecuentes que afectan el crecimiento de las plantas de los pastizales de la Pampa Deprimida de la provincia de Buenos Aires. En los últimos años se ha ganado conocimiento acerca de cuáles son los rasgos y mecanismos que confieren a especies graminoides, y a algunas especies dicotiledóneas, tolerancia a este disturbio.El documento es un resumen de resultados de proyecto de investigación.Academia Nacional de Agronomía y Veterinari
Maternally Transmitted and Food-Derived Glycotoxins: A factor preconditioning the young to diabetes?
Seismic imaging in Long Valley, California, by surface and borehole techniques: An investigation of active tectonics
The search for silicic magma in the upper crust is converging on the Long Valley Caldera of eastern California, where several lines of geophysical evidence show that an active magma chamber exists at mid‐to lower‐crustal depths. There are also other strong indications that magma may be present at depths no greater than about 5 km below the surface. In this paper, we review the history of the search for magma at Long Valley. We also present the preliminary results from a coordinated suite of seismic experiments, conducted by a consortium of institutions in the summer and fall of 1984, that were designed to refine our knowledge of the upper extent of the magma chamber. Major funding for the experiments was provided by the Geothermal Research Program of the U.S. Geological Survey (USGS) and by the Magma Energy Technology Program of the U.S. Department of Energy (DOE), a program to develop the technology necessary to extract energy directly from crustal magma. Additional funding came from DOE's Office of Basic Energy Sciences and the National Science Foundation (NSF). Also, because extensive use was made of a 0.9‐km‐deep well lent to us by Santa Fe Geothermal, Inc., the project was conducted partly under the auspices of the Continental Scientific Drilling Program (CSDP). As an integrated seismic study of the crust within the caldera that involved the close cooperation of a large number of institutions, the project was moreover viewed as a prototype for future scientific experiments to be conducted under the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL). The experiment thus represented a unique blend of CSDP and PASSCAL methods, and achieved goals consistent with both programs
Community recommendations on terminology and procedures used in flooding and low oxygen stress research
Apart from playing a key role in important biochemical reactions, molecular oxygen (O2) and its by-products also have crucial signaling roles in shaping plant developmental programs and environmental responses. Even under normal conditions, sharp O2 gradients can occur within the plant when cellular O2 demand exceeds supply, especially in dense organs such as tubers, seeds and fruits. Spatial and temporal variations in O2 concentrations are important cues for plants to modulate development (van Dongen & Licausi, 2015; Considine et al., 2016). Environmental conditions can also expand the low O2 regions within the plant. For example, excessive rainfall can lead to partial or complete plant submergence resulting in O2 deficiency in the root or the entire plant (Voesenek & Bailey-Serres, 2015). Climate change-associated increases in precipitation events have made flooding a major abiotic stress threatening crop production and food sustainability. This increased flooding and associated crop losses highlight the urgency of understanding plant flooding responses and tolerance mechanisms.
Timely manifestation of physiological and morphological changes triggering developmental adjustments or flooding survival strategies requires accurate sensing of O2 levels. Despite progress in understanding how plants sense and respond to changes in intracellular O2 concentrations (van Dongen & Licausi, 2015), several questions remain unanswered due to a lack of high resolution tools to accurately and noninvasively monitor (sub)cellular O2 concentrations. In the absence of such tools, it is therefore critical for researchers in the field to be aware of how experimental conditions can influence plant O2 levels, and thus on the importance of accurately reporting specific experimental details. This also requires a consensus on the definition of frequently used terms.
At the 15th New Phytologist Workshop on Flooding stress (Voesenek et al., 2016), community members discussed and agreed on unified nomenclature and standard norms for low O2 and flooding stress research. This consensus on terminology and experimental guidelines is presented here. We expect that these norms will facilitate more effective interpretation, comparison and reproducibility of research in this field. We also highlight the current challenges in noninvasively monitoring and measuring O2 concentrations in plant cells, outlining the technologies currently available, their strengths and drawbacks, and their suitability for use in flooding and low O2 research
- …