9 research outputs found

    Comparative algological and bacteriological examinations on biofilms developed on different substrata in a shallow soda lake

    Get PDF
    According to the European Water Framework Directives, benthic diatoms of lakes are a tool for ecological status assessment. In this study, we followed an integrative sample analysis approach, in order to find an appropriate substratum for the water qualification-oriented biomonitoring of a shallow soda lake, Lake Velencei. Six types of substrata (five artificial and one natural), i.e., andesite, granite, polycarbonate, old reed stems, Plexiglass discs and green reed, were sampled in May and in November. We analysed total alga and diatom composition, chlorophyll a content of the periphyton, surface tension and roughness of the substrata and carbon source utilisation of microbial communities. Water quality index was calculated based on diatom composition. Moreover, using a novel statistical tool, a self-organising map, we related algal composition to substratum types. Biofilms on plastic substrates deviated to a great extent from the stone and reed substrata, with regard to the parameters measured, whereas the biofilms developing on reed and stone substrata were quite similar. We conclude that for water quality monitoring purposes, sampling from green reed during springtime is not recommended, since this is the colonization time of periphyton on the newly growing reed, but it may be appropriate from the second half of the vegetation period. Stone and artificially placed old reed substrata may be appropriate for biomonitoring of shallow soda lakes in both spring and autumn since they showed in both seasons similar results regarding all measured features

    Potential implications of differential preservation of testate amoeba shells for paleoenvironmental reconstruction in peatlands

    Get PDF
    Testate amoebae are now commonly used in paleoenvironmental studies but little is known of their taphonomy. There is some experimental evidence for differential preservation of some testate amoeba shell types over others, but it is unclear what, if any impact this has on palaeoenvironmental reconstruction. To investigate this issue we looked at palaeoecological evidence for the preservation of different shell types. We then investigated the possible impact of selective preservation on quantitative palaeoenvironmental inference. We first used existing palaeoecological data sets to assess the vertical patterns of relative abundance in four testate amoeba shell types: (1) shells made of secreted biosilica plates (idiosomes, e.g. Euglypha), (2) idiosomes with thick organic coating (Assulina), (3) proteinaceous shells (e.g. Hyalosphenia), (4) shells built from recycled organic or mineral particles (xenosomes) (e.g. Difflugia, Centropyxis). In three diagrams a clear pattern of decay was only observed for the idiosome type. In order to assess the implications of differential preservation of testate amoeba taxa for paleoenvironmental reconstruction we then carried out simulations using three existing transfer functions and a wide range of scenarios, downweighting different test categories to represent the impact of selective test decomposition. Simulation results showed that downweighting generally reduced overall model performance. However downweighting a shell type only produced a consistent directional bias in inferred water table depth where that shell type is both dominant and shows a clear preference along the ecological gradient. Applying a scenario derived from previous experimental work did not lead to significant difference in inferred water table. Our results show that differential shell preservation has little impact on paleohydrological reconstruction from Sphagnum-dominated peatlands. By contrast, for the minerotrophic peatlands data-set loss of idiosome tests leads to consistent underestimation of water table depth. However there are few studies from fens and it is possible that idiosome tests are not always dominant, and/or that differential decomposition is less marked than in Sphagnum peatlands. Further work is clearly needed to assess the potential of testate amoebae for paleoecological studies of minerotrophic peatlands

    The role of climate-fuel feedbacks on Holocene biomass burning in upper-montane Carpathian forests

    Get PDF
    Over the past few decades, mean summer temperatures within the Carpathian Mountains have increased by as much as 2 °C leading to a projected increased forest fire risk. Currently, there are no paleofire records from the Western Carpathians that provide the long-term range of natural variability to contextualise the response of upper-montane forests to future environmental change and disturbance regimes. We present the first high-resolution Holocene fire history record from the upper-montane ecotone from the High Tatra Mountains, Slovakia, as well as provide a regional synthesis of pan-Carpathian drivers of biomass burning in upper-montane forests. Our results illustrate that forest composition and density both greatly influence biomass burning, creating two different climate-fuel feedbacks. First, warmer conditions in the early Holocene, coupled with generally higher abundances of Pinus sp., either P. cembra and/or P. mugo/sylvestris, created a positive climate-fuel relationship that resulted in higher amounts of biomass burning. Second, cooler and wetter late Holocene conditions led to denser Picea abies upper-montane forests, creating a negative climate-fuel feedback that reduced biomass burning in upper-montane forests across the Carpathians. Given that warmer and drier conditions are expected across the entire Carpathian region in the future, our results illustrate how future climate change could potentially create a positive climate-fuel relationship within upper-montane forests dominated by Picea abies and Pinus cembra and/or P. mugo/sylvestris
    corecore