318 research outputs found

    Recent Decisions

    Get PDF
    TREATY ON THE EXECUTION OF PENAL SENTENCES--Federal Court is not Precluded from Using Mexican Conviction as Evidence of Prior Conduct in Enhancing Subsequent Sentence, United States v. Fleishman, 684 F.2d1329 (9th Cir. 1982). The instant decision examines for the first time two significant issues surrounding the repatriation of United States prisoners from Mexico under TEPS: the legality of prisoner challenges to the collateral effects of a Mexican conviction and the use of a Mexican conviction to enhance a subsequent sentence. By refusing to extend the Rosado holding to preclude collateral effects challenges, the instant court wisely recognized the importance of preserving prisoner access to the United States federal courts, at least in the absence of the compelling diplomatic and humanitarian considerations confronting the Rosado court. ================== DEPORTATION--Aliens in Deportation Proceedings have Liberty or Property Right to Seek Political Asylum which is protected by Due Process, Haitian Refugee Center v. Smith, 676 F.2d 1023 (5th Cir. 1982) Over time, the balance between the Government\u27s power to regulate the entry of aliens and the due process rights accorded those aliens has increasingly shifted in favor of due process. Historically, Congress sought to protect alien rights under United States immigration law through the passage of the INA, the adoption of the Protocol, and most recently with the incorporation of the 1980 Refugee Act into the INA. Despite these indications from Congress, however, the INS and its regulations have lagged behind the legislature in the recognition of these increased due process rights, and this divergence has caused inconsistencies between the two government branches. The courts thus have been forced to decide which of the conflicting laws or regulations apply and the extent to which they create due process rights

    Locomotion pattern and foot pressure adjustments during gentle turns in healthy subjects

    Get PDF
    People suffering from locomotor impairment find turning manoeuvres more challenging than straightahead walking. Turning manoeuvres are estimated to comprise a substantial proportion of steps taken daily, yet research has predominantly focused on straight-line walking, meaning that the basic kinetic, kinematic and foot pressure adaptations required for turning are not as well understood. We investigated how healthy subjects adapt their locomotion patterns to accommodate walking along a gently curved trajectory (radius 2.75 m). Twenty healthy adult participants performed walking tasks at self-selected speeds along straight and curved pathways. For the first time for this mode of turning, plantar pressures were recorded using insole foot pressure sensors while participants’ movements were simultaneously tracked using marker-based 3D motion capture. During the steady-state strides at the apex of the turn, the mean operating point of the inside ankle shifted by 1 degree towards dorsiflexion and that for the outside ankle shifted towards plantarflexion. The largest change in relative joint angle range was an increase in hip rotation in the inside leg (>60%). In addition, the inside foot was subject to a prolonged stance phase and a 10% increase in vertical force in the posteromedial section of the foot compared to straight-line walking. Most of the mechanical change required was therefore generated by the inside leg with hip rotation being a major driver of the gentle turn. This study provides new insight into healthy gait during gentle turns and may help us to understand the mechanics behind some forms of impairment

    Bacterial Bioluminescence Regulates Expression of a Host Cryptochrome Gene in the Squid-Vibrio Symbiosis

    Get PDF
    ABSTRACTThe symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut.IMPORTANCEIn mammals, biological rhythms of the intestinal epithelium and the associated mucosal immune system regulate such diverse processes as lipid trafficking and the immune response to pathogens. While these same processes are affected by the diverse resident microbiota, the extent to which these microbial communities control or are controlled by these rhythms has not been addressed. This study provides evidence that the presentation of three bacterial products (lipid A, peptidoglycan monomer, and blue light) is required for cyclic expression of a cryptochrome gene in the symbiotic organ. The finding that bacteria can directly influence the transcription of a gene encoding a protein implicated in the entrainment of circadian rhythms provides the first evidence for the role of bacterial symbionts in influencing, and perhaps driving, peripheral circadian oscillators in the host

    A Hypothesis-Testing Framework for Studies Investigating Ontogenetic Niche Shifts Using Stable Isotope Ratios

    Get PDF
    Ontogenetic niche shifts occur across diverse taxonomic groups, and can have critical implications for population dynamics, community structure, and ecosystem function. In this study, we provide a hypothesis-testing framework combining univariate and multivariate analyses to examine ontogenetic niche shifts using stable isotope ratios. This framework is based on three distinct ontogenetic niche shift scenarios, i.e., (1) no niche shift, (2) niche expansion/reduction, and (3) discrete niche shift between size classes. We developed criteria for identifying each scenario, as based on three important resource use characteristics, i.e., niche width, niche position, and niche overlap. We provide an empirical example for each ontogenetic niche shift scenario, illustrating differences in resource use characteristics among different organisms. The present framework provides a foundation for future studies on ontogenetic niche shifts, and also can be applied to examine resource variability among other population sub-groupings (e.g., by sex or phenotype)

    Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review.

    Get PDF
    The use of small Unmanned Aircraft Systems (UAS; also known as "drones") for professional and personal-leisure use is increasing enormously. UAS operate at low altitudes (<500 m) and in any terrain, thus they are susceptible to interact with local fauna, generating a new type of anthropogenic disturbance that has not been systematically evaluated. To address this gap, we performed a review of the existent literature about animals' responses to UAS flights and conducted a pooled analysis of the data to determine the probability and intensity of the disturbance, and to identify the factors influencing animals' reactions towards the small aircraft. We found that wildlife reactions depended on both the UAS attributes (flight pattern, engine type and size of aircraft) and the characteristics of animals themselves (type of animal, life-history stage and level of aggregation). Target-oriented flight patterns, larger UAS sizes, and fuel-powered (noisier) engines evoked the strongest reactions in wildlife. Animals during the non-breeding period and in large groups were more likely to show behavioral reactions to UAS, and birds are more prone to react than other taxa. We discuss the implications of these results in the context of wildlife disturbance and suggest guidelines for conservationists, users and manufacturers to minimize the impact of UAS. In addition, we propose that the legal framework needs to be adapted so that appropriate actions can be undertaken when wildlife is negatively affected by these emergent practices

    A Hypothesis-Testing Framework for Studies Investigating Ontogenetic Niche Shifts Using Stable Isotope Ratios

    Get PDF
    Ontogenetic niche shifts occur across diverse taxonomic groups, and can have critical implications for population dynamics, community structure, and ecosystem function. In this study, we provide a hypothesis-testing framework combining univariate and multivariate analyses to examine ontogenetic niche shifts using stable isotope ratios. This framework is based on three distinct ontogenetic niche shift scenarios, i.e., (1) no niche shift, (2) niche expansion/reduction, and (3) discrete niche shift between size classes. We developed criteria for identifying each scenario, as based on three important resource use characteristics, i.e., niche width, niche position, and niche overlap. We provide an empirical example for each ontogenetic niche shift scenario, illustrating differences in resource use characteristics among different organisms. The present framework provides a foundation for future studies on ontogenetic niche shifts, and also can be applied to examine resource variability among other population sub-groupings (e.g., by sex or phenotype)

    Population-Level Metrics of Trophic Structure Based on Stable Isotopes and Their Application to Invasion Ecology

    Get PDF
    Biological invasions are a significant driver of human-induced global change and many ecosystems sustain sympatric invaders. Interactions occurring among these invaders have important implications for ecosystem structure and functioning, yet they are poorly understood. Here we apply newly developed metrics derived from stable isotope data to provide quantitative measures of trophic diversity within populations or species. We then use these to test the hypothesis that sympatric invaders belonging to the same functional feeding group occupy a smaller isotopic niche than their allopatric counterparts. Two introduced, globally important, benthic omnivores, Louisiana swamp crayfish (Procambarus clarkii) and carp (Cyprinus carpio), are sympatric in Lake Naivasha, Kenya. We applied our metrics to an 8-year data set encompassing the establishment of carp in the lake. We found a strong asymmetric interaction between the two invasive populations, as indicated by inverse correlations between carp abundance and measures of crayfish trophic diversity. Lack of isotopic niche overlap between carp and crayfish in the majority of years indicated a predominantly indirect interaction. We suggest that carp-induced habitat alteration reduced the diversity of crayfish prey, resulting in a reduction in the dietary niche of crayfish. Stable isotopes provide an integrated signal of diet over space and time, offering an appropriate scale for the study of population niches, but few isotope studies have retained the often insightful information revealed by variability among individuals in isotope values. Our population metrics incorporate such variation, are robust to the vagaries of sample size and are a useful additional tool to reveal subtle dietary interactions among species. Although we have demonstrated their applicability specifically using a detailed temporal dataset of species invasion in a lake, they have a wide array of potential ecological applications
    • …
    corecore