12,662 research outputs found
Assessing the impact of seasonal-rainfall anomalies on catchment-scale water balance components
Abstract. Although water balance components at the catchment scale
are strongly related to annual rainfall, the availability of water resources in
Mediterranean catchments also depends on rainfall seasonality. Observed
seasonal anomalies in historical records are fairly episodic, but an
increase in their frequency might exacerbate water deficit or water excess
if the rainy season shortens or extends its duration, e.g., due to climate
change. This study evaluates the sensitivity of water yield,
evapotranspiration, and groundwater recharge to changes in rainfall
seasonality by using the Soil Water Assessment Tool (SWAT) model applied to
the upper Alento River catchment (UARC) in southern Italy, where a long time
series of daily rainfall is available from 1920 to 2018. We compare two
distinct approaches: (i) a "static" approach, where three seasonal features
(namely rainy, dry, and transition fixed-duration 4-month seasons) are
identified through the standardized precipitation index (SPI) and (ii) a
"dynamic" approach based on a stochastic framework, where the duration of
two seasons (rainy and dry seasons) varies from year to year according to a
probability distribution. Seasonal anomalies occur when the transition
season is replaced by the rainy or dry season in the first approach and when
season duration occurs in the tails of its normal distribution in the second
approach. Results are presented within a probabilistic framework. We also
show that the Budyko curve is sensitive to the rainfall seasonality regime
in UARC by questioning the implicit assumption of a temporal steady state
between annual average dryness and the evaporative index. Although the
duration of the rainy season does not exert a major control on water
balance, we were able to identify season-dependent regression equations
linking water yield to the dryness index in the rainy season
The Role of Volunteered Geographic Information towards 3D Property Cadastral Systems (2): A Purpose Driven Web Application
VGI has not proved to be readily suitable to replace well-established accurate methods and technologies such as those of full standard cadastral surveys. Even so, VGI potentialities as relevant source of geospatial data have been widely acknowledged. As such, some authors have defended that VGI may in fact play an important role such as at a local cadastral jurisdiction level towards local spatial data infrastructures. As far as property cadastre is concerned, the full extent 3D complexity inside a property is in many instances only known to their occupants, thus making crowd sourcing perhaps the only economically feasible approach for its capture. While the crowd cannot be expected to conduct a full cadastral survey, it may be possible to ask them to indicate at least the location of complex 3D situations and thus to facilitate local authorities’ understanding of the extent of some cadastral issues. As such, it was argued in our previous work that geoinformation from the crowd might in fact be taken into account as an interim step before a full surveyed 3D cadastre is eventually achieved. As such, possible room for VGI in the context of 3D cadastre was discussed, and a hierarchical framework of levels of data acquisition to be used at local cadastral jurisdiction level was proposed. Such framework is revisited in this paper.Given context above, this paper focuses primarily on two aspects. Firstly, to review technical requirements of the official cadastral process in Portugal in order to identify which sorts of cadastral data are likely to be acquirable/not acquirable through VGI. Secondly, to design and to implement the prototype of a web-based application (IGV3Dcad) envisaged for general public usage to flag different land and property ownership situations. Having information about the extent of the 2D/3D issue is also fundamental to making a decision as to whether a 3D cadastral approach is actually needed and hence to further invest resources in even more expensive 3D survey
XMM-Newton and Swift observations of XTE J1743-363
XTEJ1743-363 is a poorly known hard X-ray transient, that displays short and
intense flares similar to those observed from Supergiant Fast X-ray Transients.
The probable optical counterpart shows spectral properties similar to those of
an M8 III giant, thus suggesting that XTEJ1743-363 belongs to the class of the
Symbiotic X-ray Binaries. In this paper we report on the first dedicated
monitoring campaign of the source in the soft X-ray range with XMM-Newton and
Swift/XRT. T hese observations confirmed the association of XTEJ1743-363 with
the previously suggested M8 III giant and the classification of the source as a
member of the Symbiotic X-ray binaries. In the soft X-ray domain, XTEJ1743-363
displays a high absorption (~6x10^22 cm^-2 ) and variability on time scales of
hundreds to few thousand seconds, typical of wind accreting systems. A
relatively faint flare (peak X-ray flux 3x10^-11 erg/cm^2/s) lasting ~4 ks is
recorded during the XMM-Newton observation and interpreted in terms of the wind
accretion scenario.Comment: Accepted for publication on A&
Relaxation to equilibrium driven via indirect control in Markovian dynamics
We characterize to what extent it is possible to modify the stationary states
of a quantum dynamical semigroup, that describes the irreversible evolution of
a two-level system, by means of an auxiliary two-level system. We consider
systems that can be initially entangled or uncorrelated. We find that the
indirect control of the stationary states is possible, even if there are not
initial correlations, under suitable conditions on the dynamical parameters
characterizing the evolution of the joint system.Comment: revtex4, 7 page
Numerical solution of the radiative transfer equation: X-ray spectral formation from cylindrical accretion onto a magnetized neutron star
Predicting the emerging X-ray spectra in several astrophysical objects is of
great importance, in particular when the observational data are compared with
theoretical models. To this aim, we have developed an algorithm solving the
radiative transfer equation in the Fokker-Planck approximation when both
thermal and bulk Comptonization take place. The algorithm is essentially a
relaxation method, where stable solutions are obtained when the system has
reached its steady-state equilibrium. We obtained the solution of the radiative
transfer equation in the two-dimensional domain defined by the photon energy E
and optical depth of the system tau using finite-differences for the partial
derivatives, and imposing specific boundary conditions for the solutions. We
treated the case of cylindrical accretion onto a magnetized neutron star. We
considered a blackbody seed spectrum of photons with exponential distribution
across the accretion column and for an accretion where the velocity reaches its
maximum at the stellar surface and at the top of the accretion column,
respectively. In both cases higher values of the electron temperature and of
the optical depth tau produce flatter and harder spectra. Other parameters
contributing to the spectral formation are the steepness of the vertical
velocity profile, the albedo at the star surface, and the radius of the
accretion column. The latter parameter modifies the emerging spectra in a
specular way for the two assumed accretion profiles. The algorithm has been
implemented in the XSPEC package for X-ray spectral fitting and is specifically
dedicated to the physical framework of accretion at the polar cap of a neutron
star with a high magnetic field (> 10^{12} G), which is expected to be typical
of accreting systems such as X-ray pulsars and supergiant fast X-ray
transients.Comment: 13 pages, 20 figures, accepted for publication in A&
Multi-wavelength observations of IGR J17544-2619 from quiescence to outburst
In this paper we report on a long multi-wavelength observational campaign of
the supergiant fast X-ray transient prototype IGR J17544-2619. A 150 ks-long
observation was carried out simultaneously with XMM-Newton and NuSTAR, catching
the source in an initial faint X-ray state and then undergoing a bright X-ray
outburst lasting about 7 ks. We studied the spectral variability during
outburst and quiescence by using a thermal and bulk Comptonization model that
is typically adopted to describe the X-ray spectral energy distribution of
young pulsars in high mass X-ray binaries. Although the statistics of the
collected X-ray data were relatively high we could neither confirm the presence
of a cyclotron line in the broad-band spectrum of the source (0.5-40 keV), nor
detect any of the previously reported tentative detection of the source spin
period. The monitoring carried out with Swift/XRT during the same orbit of the
system observed by XMM-Newton and NuSTAR revealed that the source remained in a
low emission state for most of the time, in agreement with the known property
of all supergiant fast X-ray transients being significantly sub-luminous
compared to other supergiant X-ray binaries. Optical and infrared observations
were carried out for a total of a few thousands of seconds during the
quiescence state of the source detected by XMM-Newton and NuSTAR. The measured
optical and infrared magnitudes were slightly lower than previous values
reported in the literature, but compatible with the known micro-variability of
supergiant stars. UV observations obtained with the UVOT telescope on-board
Swift did not reveal significant changes in the magnitude of the source in this
energy domain compared to previously reported values.Comment: Accepted for publication on A&A. V2: few typos correcte
Spin relaxation rates in quasi-one-dimensional coupled quantum dots
We study theoretically the spin relaxation rate in quasi-one-dimensional
coupled double semiconductor quantum dots. We consider InSb and GaAs-based
systems in the presence of the Rashba spin-orbit interaction, which causes
mixing of opposite-spin states, and allows phonon-mediated transitions between
energy eigenstates. Contributions from all phonon modes and coupling mechanisms
in zincblende semiconductors are taken into account. The spin relaxation rate
is shown to display a sharp, cusp-like maximum as function of the
interdot-barrier width, at a value of the width which can be controlled by an
external magnetic field. This remarkable behavior is associated with the
symmetric-antisymmetric level splitting in the structure.Comment: 4 figures, Submitted to Applied Physics Letter
Embedding initial data for black hole collisions
We discuss isometric embedding diagrams for the visualization of initial data
for the problem of the head-on collision of two black holes. The problem of
constructing the embedding diagrams is explicitly presented for the best
studied initial data, the Misner geometry. We present a partial solution of the
embedding diagrams and discuss issues related to completing the solution.Comment: (27pp text, 11 figures
Impact of positivity and complete positivity on accessibility of Markovian dynamics
We consider a two-dimensional quantum control system evolving under an
entropy-increasing irreversible dynamics in the semigroup form. Considering a
phenomenological approach to the dynamics, we show that the accessibility
property of the system depends on whether its evolution is assumed to be
positive or completely positive. In particular, we characterize the family of
maps having different accessibility and show the impact of that property on
observable quantities by means of a simple physical model.Comment: 11 pages, to appear in J. Phys.
- …