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ABSTRACT 

Context. Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the 
observational data are compared with theoretical models. This requires developing numerical routines for the solution of the 
radiative transfer equa.tion according to the expected physical conditions of the systems under study. 
Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both 
thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are 

>- obtained when the system has reached its steady-state equilibrium. -
,...... 
,...... -
> .-
~ 

Methods. We obtained the solution of the radiative transfer equa.tion in the two-dimensional domain defined by the photon 
energy E and optical depth of the system Tusing finite-Qifferences for the partial derivatives, and imposing specific boundary 
conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. 
Results. \Ve considered a. blackbody seed spectrum of photons with exponential distribution across the accretion column and for 
an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. 
In both cases higher values of the electron temperature and of the optical depth T produce fla.tter and harder spectra. Other 
parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star 
surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the 
two assumed accretion profiles. 
Conclusions. The algorithm has been implemented in the XSPEC package for X-ra~T spectral fitting and is specifically dedicated 
to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (.<; lOl2 G). This latter case 
is expected to be typical of accreting systems such as X-ray pulsars and supergiant fast X-ray transients. 
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1. Introduction 

The solution of the radiative transfer equation (RTE) 
that describes the modification of a seed photon spectrum 
due to Comptonization in a plasma is a much debated 
matheme,tical problem. The equation in its full form is 
indeed integro-differential (Pomraning 1973) and allows 
for analytical solutions under some particular assump­
tions, such as electron temperature Te = 0 (Titarchuk & 
Zannias 1998) or in the energy domain when the emerg­
ing spec,rum is a pov.erlaw (Titarchuk & Lyubarskij 
1995). If the photon energy exchange for scattering is low 
(/),,1.1/1.1 « 1), it is possible to perform a Taylor expan­
sion of the Comptonization operator around the photon 
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initial energy, which transforms the RTE from integro­
differential to purely differential (Rybicki & Lightman 
1979); this is known as the Fokker-Planck (FP) approx­
imation. The necessary conditions to allow this mathe­
matical approach are that the Compton-scattering process 
occurs below the Klein-Nishina regime, namely when the 
electron temperature kT. is subrelativistic (;S 100 keY) , 
and that the optical depth of the Comptonization region 
is .,. <: 1. The regime of low temperature and high op­
tical depth of the plasma indeed ensures that the spec­
tri.lm is almost isotropized, so that it is possible to use 
the Eddington approximation for the specific intensity 
1(1.1) = J(v) + 3\7· F(1.I), where J and F are the zero and 
first moment of the intensity field, respectively. 

https://ntrs.nasa.gov/search.jsp?R=20120009381 2019-08-30T20:35:05+00:00Z
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1-for6over, if the plasma is not static but subject to 
dynamical (bulk) motion with velocity v( T), then another 
condition for using the FP approximation is that v{ T) 
must be subrelativistic. \\-hen all the above restrictions 
are coIlEidered, one obtains by computing the first two 
moments of the RTE a main equation that describes the 
shape of the angle-averaged emerging intensity J(v) of 
the Comptonization spectrum. The general form of the 
RTE for the photon occupation number n(v) = J(v)/v" 
with subrelativistic electron temperature in the presence 
of bulk motion was first derived by Blandford & Payne 
(1981, hereafter BP81). Later, Titarchuk et a1. (1997, here­
after TUK97) showed that analytical solutions can be 
found if the velocity profile (assuming spherical symme­
try) of tlle matter follows the free-fall law, VR cc R-1/ 2 

In this case, the equation can be written as L,n(x, T) + 
L,n(x, T) = -six, T) and the solution can be obtained 
using the variable-separation method in the form 

00 

nix, T) = L C.R.(T)N.{x), (I) 
k=l 

where Ck and Rk(T) are the expansion coefficients and 
eigenfunctions of the space operator L.,., respectively, 
while Nk(x) is the solution of the differential equation 

(2) 

where 7' cc >.~ and >.~ is the kth-eigenvalue of the space 
operator. 

The Comptonization spectrum is mostly dominated 
bv the first eigenvalue (see Fig. 3 in T~!K97), while the 
terms N,{x) with k ~ 2 represent the fraction of pho­
tons that leave the medium without appreciable energy­
exchange. Starting from the results of TMK97, Farinelli 
et 0.1. (2C08, hereafter F08) developed a model (COMPTB) 

for the X-ray spectral fitting package XSPEC, which com­
putes the emerging spectrum b~' means of a numerical 
convolut:on of the Green's function of the energy operator 
with a blackbody (BB)-like seed spectrum. The model has 
been successfully applied to a sample of low-mass X-ray 
binaries hosting a neutron star (NS). The method of the 
variable .separation has also been adopted by Becker & 
Wolff (2007, hereafter BW07), to find analytical solutions 
of the RTE in the case of cylindrical accretion onto the 
polar cap of a magnetized NS. The starting equation in 
BW07 is formally the same as in BP81: the most signif­
icant difference is that the Thomson cross-section is re­
placed by an angle-averaged cross-section that takes into 
account the presence of the magnetic field (B _ 1012 

G). Following the results of Lyubarskii & Sunyaev (1982), 
BW07 assumed a velocity profJe V(T) cc -T, which al­
lowed the RTE to be separable in energy and space. Kote 
that the assumed velocity profile implies that the matter 
flow stagnates at the stellar surface, which is at odds with 
the solution of TMK97, where the matter velocity is in­
creasing .owards the central object, which can be either 
a NS or a black hole (BH). When the velocity profile is 

not free fall-like (TMK97, F08), or cc T (BW07), the vari­
able separation method can no longer be applied and the 
solution of the RTE can be obtained only with numerical 
methods. 

We report a numerical algorithm that allows the solu­
tion of the RTE in the FP regime using finite-differences 
for any desired velocit,- profile and seed photon spatial and 
energy distribution. We apply in particular it to cylin­
drical accretion towards the polar caps of a magnetized 
NS, following the approach of BW07. The algorithm es­
sentially uses a relaxation method, therefore it finds the 
asymptotic (stationary) solution of the RTE for a given 
initial value (at time t = 0) condition. Our work is struc­
tured as follows: in Section 2 we describe the kernel of the 
algorithm for generic two-variable elliptic partial differen­
tial equations; in Section 3 we formulate the problem for 
the general RTE and appropriate boundary conditions; in 
Section 4 we consider the more specific case of a system 
configuration with azimuthal symmetry, typical of cylin­
drical accretion; in Section 5 we show the emerging spec­
tra obtained for different sets of the theoretical parameter 
space; finally, in Section 6 we briefly discuss possible as­
trophysical consequences and implementations (e.g., for 
XSPEC) derived from the application of the algorithm. 

2. The general elliptic partial differential 
equations 

The algorithm we report is essentially based on the relax­
ation methods, which allow one to find the solution of a 
boundary elliptical problem. The differential equation has 
to be written by finite differences. Once the sparse matrix 
is defined, it can be split into layers over which an itera­
tion process is applied until" solution is found (Press et al. 
1992). The general form of a linear second-order elliptic 
equation with vanishing mixed derivatives and a source 
term can be written as 

~u ~ ~u 
Pix, y) ox2 + Q(x, y) ax + R(x, y)u + W(x , y) oy2 

au au 
+~(x, y) oy = at - six, y). (3) 

We define a three-dimensional grid of discrete points for 
the variables x, y and t; 

xi = xo+ihx, i=O, I, . .. ,N2'" 

Yj = Yo + jhy, j = 0,1 , ... , Ny , 

tm = to + mht, m = 1,2, ... , M, (4) 

where h2'" hy, ht are the grid spacing. The function 
u(x , y , t) is evaluated at any point of the grid, so we write 
it as u{,m. We write the first and second derivatives over 
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the va.ria.bles using finite differences: 

au uj,m _ ui,m a2u tL~,m _ 2u?,m + u~,m 
HI j ,+1 t , - 1 = ax h. ax2 h2 

• 
au i..;.l,m j,m a2u U~+I,m _ 2u~,m + U~-I,m 

= 
'Uj - Ui _ , t., 

ay h. ay2 h2 
y 

au 'U~,m _ u~,m-l 
= 

, , 
(5) at '" Substituting the above definitions into equation (3) and 

collecting terms, we obtain 

the system (9), which gives 

um _ um- 1 

A.urn + ~y"m = h
t 

S 

+ht~.,Ay (um _ ,,=-'). (10) 

The third term on the right-hand side of equation (10) 
represents the residual error in the numerical solution. As 
a first step, we collect the terms with the same index in 
both equations (9) and obtain 

( ~x - ~J U m
-

1/2 

(~y - ~J urn (11) 

Both equations are defined inside a 2D (x, y)-domain, 
(6)with boundary conditions defined according to the spe­

where 

a~ = , 

IJ{ 

c! -
P (Xi,yJ) Q(x;,yJ) 

h2 + h ' x x 

W(x; ,yJ) 
h2 

Y 

2W(x;,7/;) Z(Xi, y;) 
e{ = - h2 + h ' 

y y 

W(x;, V;) Z(Xi,yJ) 
h~ hy 

Sf ~ S(x"yJ). (7) 

The operators over the x and y variables are then defined 
as 

Ax = a{ +b{ +c1, 
Ay = d; +e; +f/. (8) 

The solution procedure consists of dividing equation (6) 
into two equations. The first gives us the sobtion for an 
intermediate m - 1/2 larer, while the second provides the 
solution for the m·layer. As starting point we need to es­
tablish en initial guess for the function at m = 1. The 
system or equa.tions to be solved is thus 

Um-1/2 _ u m - 1 
--;-----S, 

'" 
(9) 

in which ".-e have temporarily dropped the indices i,j. 
From the system we notice that the intermediate layer 
m - 1/2 is needed only to build up the solution at the 
subsequent layer in m. The numerical accuracy of the ~ 
luI ion can be estimated by combining both equations in 

cific problem under consideration. First, for any m and 
j values, we must impose the boundary condition on the 
left-hand side of the x-domain (i ~ 0) for the function 

j,m-l/2 
Uo 

; ,m-1/2 _ -.i 
Uo - Yo' (12) 

while the source term S6 is defined at the beginning. Thus, 
for i ~ 0, equation (6) can be written as 

j ,m-l j 2 _ LA i j,Tn-l / 2 + K' ; 
Uo - OUI 0, 

where 

S
Aj,m-l _ 
o -

(13) 

(14) 

with the coefficients determined in equation (7). For i = 1, ' 
using equation (13) ,,'e obtain 

( 
;L'; + d ~) ;,m-1/2 +~; ;,m-1/2 al 0 {Ii - h

t 
Ul C-l u2 

- s~j ,m-l _ aj i<j 
- 1 1 0' 

which can be ,,-ritten as 

j,m-l/ 2 _ L" j j,m-l/ 2 + K' ; 
u 1 - lU2 l' 

where 

L{ ~ S"j,m-l jK'; 
Aj 1 -a1 0 

K, ~ .,. . . 
a{L~ +b{ - t 

Iterating the process, we obtain the general form 

i,m-l / 2 _ LA j j,m-l/2 + K'; 
U i - i'Ui+I i ' 

where 

;L'; + d l' a· . 1 ~ - -r-1 ' - I nt 

" . I ..... 
.. j Si,m- - at Ki_l 

K i = j A j . 1· 
a·L· 1 + U1 - ~ '1- l nt 

(15) 

(16) 

(17) 

(18) 

(19) 
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At the right bounda.ry of the x-domain (i = N.), we im­
pose the second boundary condition 

(20) 

NoV!, using equation (18) we can thus build up the solution 
over the x-variable iteratively as 

'Ui;.7:~11/~ = t1v",-l!lN:r + k~",_l' 
j ,m - I / . _ i j ~j,m-I/2 + k j 

'UN ", _ 2 - N",-2'{1;N", -1 N z -2' 

j,m-l/2 _ L-juj ,m- l/2 + K- j 
U o - 0 1 o· (21) 

Therefore, the construction of the solution is obtained in 
two steps: a bot!"'m-up process which allows one to build 
the coefficients L: and KI (Eq. [19]) starting from the left 
boundar:; condition on u6 (Eq. [12]), followed by a top­
down procedure determined by the right boundary condi­
tion u'N. (Eq. [20]). 

Once the solution over the x-variable for the m - 1/ 2 
la)'er is obtained for any j (the index of the y variable), we 
then seek the solution of the second equation in the system 
(9) by following the same procedure described above with 
initial boundary condition at j = 0 

(22) 

and, similarly to equation (19) 

L' = , it . s-j,m _ d'K-i-I 
-1 _ iii 

Ki - d'L-j i,m + 0 + 1 ' 
i i e j ~ 

where 

_. (.. 1). ui ,m-I/2 
S"m = d' + d + iJ + _ u"m- l _ -'-'-;-_ 

t Jtihti Itt' 

(23) 

(24) 

depends on the solutions u:,m-l / 2 and u{·m-l obtained in 
the layers m - 1/2 and m - 1. 
As required for the procedure over the :z:-\-a.riable, the coef­
ficients L~' and k1, built from is and kp I are determined 
by the left boundary condition (j = 0) for the function 
uf, and ~he solution for any j is determined by t he right 
boundary condition u~tI = g;'lI: 

O,m u, = L-o l,m + K-0 
I U, I ' (25) 

After constructing the solution over the x and y variable, 
the solution of the top la.yer m becomes the initial function 
of the bottom layer related to iteration m + 1 according 
to the seneme 

m= 1 -> (UO U I / 2 Ul) , , , 
m= 2 -> (u l U 3/ 2 u2 ) , , , 

(26) 

It is also worth mentioning that at the first iteration m = 1 
an initial guess function ui'o must be assumed, which is 

. 1/ 2 . I 
needed to find the solutions u:' and u;' in the system 
(9). The loop over m stops when the same convergence 
criterion is satisfied, which physically means that the so­
lution has t!relaxed~' to its stationary value. One possible 
criterion could be 1 - 0 < lulm-'I/lulm- I / 2 < 1 + 0 and 
1 - 0 < lulm- I

/ 2 1/lulm < 1 + 0, where 0 is a user-defined 
numerical tolerance. In the next section we will show in­
stead another convergence criterion we have chosen for 
stopping the iteration procedure, for the particular case 
of the RTE. 

3, Application to the radiative transfer equation 
and boundary conditions 

The general form of the RTE in the presence of subrelar 
tivistic bulk motion for a plasma with constant tempera­
ture Te is given by (see Eq.[18] in BP81) 

an + V . V'n = V'. ( 1 V'n) + ~ (V' . V) v an 
at 3neu(v) 3 av 

1 a [neu(v) 4 ( an).].( + v2 8v ~1I n+Teav +J v,r), 

(27) 

where n(v, r) is the zero-moment occupation number of 
the radiation field intenBity, V is the plasma bulk veloc­
ity vector, u(v) is the electron scattering cross-section l 

ne(r) is the electron denBity and j(v, r) is the source term. 
Because the spectra.l forma.tion is determined by the op­
tical depth r of the system, we use the latter quantity as 
the actual space variable. The solution of equation (27) is 
fulfilled by imposing the boundary condition at the sur­
face defined hv r = 0, (v.'hich represents the starting point 
of the integration domain) for the spectral flux, which is 
given by 

F(II,r) = -v
3 [(3ne~(v) V'n) + ~Vv~:]. (28) 

Under particular symmetries of the system configuration 
(e.g., cylindrical or spherical), the problem becomes one­
dimensional. For constant electron temperature Tc it is 
also more convenient to use the adimensional variable 
x == hv / kTe; moreover, when performing numerical inte­
gration using finite-difference methods, we use a logarith­
mic binning of the energy through the additional change 
of variable x --+ eq . Under these assumptions, equation 
(28) becomes ~ 

F(q r) "'_ [~aJ + ~V (aJ - J)] 
• 3 ar 3 aq , (29) 

where J == n x3 is the specific intensity. 
At the inner boundary we impose the condition 

1 (1 -A) F(q 0) = -- -- J 
, 2 l+A ' (30) 
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where A is the albedo at the surface. A fully absorptive 
surface (A = 0) is appropriate for a BH, while 0 < A :5 1 
accounts, e,g" for a NS atmosphere, However, the in­
ner bou~dary condition (30) depends on energy as well 
as space (see Eqs. [28] and [29]). For mixed boundary 
value problems, no analytical solutions are possible (see 
Appendix E in T11K97) and numerical methods prove 
to be unstable, However, in the energy range where the 
spectrut;l is a powerlaw J(x , 7) = R(7)X-a, equation (30) 
becomes ' 

- -+110(a + 3)R=-- -- R dR 3(I - A) 
d7 2 1 + A ' 

(31) 

where 110 is the bulk velocity at the inner radius (7 = 0), 
and here the problem is reduced to a standard boundary 
condition over the space variable T. Writing the derivative 
in terms of finite-difference, equation (31) then becomes 

--'--' + ~-(a+3)u. = -- -- u · ,,1 _ 1'0 0 3 (I -A ) 0 

h, "" '2 I+A ' " 
(32) 

which can he written after collecting terms as 

u? = 1 u~ 
1 + h,[l1o(a + 3) + C(A)J " 

(33) 

where C(A) = 3/2{1- A)/ {1 + A). We then set our prob­
lem as follows: first, because the solution u{ of the RTE 
physically represents a specific intensity, it must by defi­
nition be equal to zero in the limits E ~ a and E --t 00, 

therefore we set 1'~ = u1." = 0 (see Eqs. [12J and [20]). For 
the hehavior of the function ui for 7 = 0 (j = 0), equation 
(33) immediately allows us to define (see Eq. [22]) 

-0 1 
L, = :-1 "'-+-;-h', [11"'"07( a--'+':--;,;3):-+:-C""("A"')] , 

-0 K, = O. (34) 

Ai; outer boundary condition over T, we impose that U~II = 
0, which means that the specific intensity goes t? zero for 
T --t Tmax , 

We emphasize that the condition 1'{ > 0 for any (i, j)­
value implies a specific restriction in the choice of the step 
size h" which ensures that L? > 0 (as flo :5 0). 1I10re 
specifically, we imposed the condition on h, such that the 
number of steps over T be NT = Tmax/h-r ~ 10. 

3.1. The iteration procedure 

As already mentioned in Section 2, it is necessary to choose 
a convergence criterion for stopping the iteration over the 
m variable. We proceeded in the following way: at each 
iteration m, we computed the spectral index am of the 
solution ·u?·m (corresponding to T = 0) in a given energy 
range Emin - Emax. To minimize bias or wrong estimate 
of am., the definition of the energy interval for the com­
putation of the spectral slope must be chosen carefully. If 
the seed photon spectrum is a BB "ith temperature kTbb, 
a reasons ble choice can be the assumption Emin ~ 7kTbb 
and Emax R: 20kTbbl respectively, given that this interval 

is above the major contribution of the BB component and 
below the expected high-energv cut-off value. 

Once Q'm is estimated, it is inserted into equation (34), 
which accordingly represents the boundary condition at 
7 = 0 for the iteration m + 1 (see Eq. [22]). We then com­
puted the new index Q'm+l for u~,~+l, and again inserted 
it into equation (34) at iteration m + 2, and so on. The 
routine is stopped when am and am+l differ less than 
10- 5 provided that the condition holds for a sufficiently 
high number of iterations (> 100). Note that the same 
criterion is adopted also if {30 = 0, even if then of course 
L? remains constant across the iteration. We have also 
verified that this criterion automatically also satisfies the 
convergence of the norms lulm- l , lulm- 1/2, and lulm. 

4. Cylindrical accretion onto a magnetized 
neutron star 

We applied our algorithm to solve the RTE for accretion 
towards the polar cap of a magnetized NS, whose mathe­
matical formalism was developed by BW07 in the frame­
work of the spectral formation of accretion-powered X-ray 
pulsars. The relatively strong magnetic field (B ~ 1012G) 
of the NS is expected to channel the accretion flow to­
wards the poiar caps, and for low values of the altitude 
above the star surface, the problem can be treated in a 
axis-symmetric approximation where the space variable is 
defined by the vertical coordinate Z. The magnetic field 
moreover forces the medium to become birefringent as 
the effect of vacuum polarization, and birefringence en­
tails the formation of two linearly polarized modes (or­
dinary and extraordinary) of the photons, each having a 
characteristic scattering cross-section. For ordinary mode 
photons with energy below the first cyclotron harmonic 
at E, '" 11.57 B'2 keY (where B'2 == B/l012 G), BW07 
defined angle-averaged cross-sections parallel and perpen­
dicular to the lines of the magnetic field as 0' 11 = 1O-30'T 

and 0'1.. = O'T, respectively, where O'T is the Thomson scat­
tering cross-section. This is indeed the only approximation 
that allows to treat the problem analytically or 'numeri­
call.v. We note that Ferrigno et al. (2009), starting from the 
analytical solutions reported in BW07, developed a model 
that y:as later almost successfully tested on the accret­
ing pulsar 4U 0115+63. Their model is based essentially 
on the convolution of the column-integrated Green's func­
tion of the thermal plus hulk scattering operator with a 
given seed photon distribution. The basic assumption of 
this derivation is that the velocity profile of the accreting 
matter is assumed to be V(7) ()( -7, which allows one to 
find analytical solutions through the variable separation 
method (Eqs. [36] and [37] in BW07). The numerical al­
gorithm we developed directlv soh'es the RTE, without 
the need o(this prescri ption for the dynamical configura­
tion of the accreting matter field, and we included some 
modifications with respect to the approach of BW07 and 
Ferrigno et al. (2009). 

First, following TMK97, we include in equation (27) a 
second term in the thermal Comptoniza.tion operator that 
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accounts for the contribution of the bulk motion ,-eloc­
ity of electrons in addition to their thermal (Maxwellian) 
compon'3nt. With this prescription in mind, equation (27) 
becomee 

To solve equation (37), it is necessary to define the behav­
ior of the velocity profile {J( r). We considered two possi­
bilities: in the first one, we assumed a general form 

{J(Z) = -sd(Z,/Z)-', (42) 

v on dv. an a ( 1 8n) where the normalization constant is defined sd = 
S(., Z) = -;; 8Z + dZ 3c BE + 8Z 3n'0" 11 8Z {Jo(Zo/Z.)·, and {Jo is the terminal velocity at the alti­

tude Zoo 

18n 
c 8t 

n + nea ~.Q. [.< (n + (kTc + m.,?/ 3) an)] , (35) The continuity equation for the system here considered 
tose m.e". 8. 8, gives the electron number density 

where f = hv, (j = lO-luTI while tesc is ~he photon mean 
escape timescale (see Eq. [17] in BW07) 

neU ..LT5 
tesc= ---. 

e 
(36) 

Now, USing the relation d1" = neO"lldZ and the logarithmic 
binning of the adimensional energy x = hv/kTe , equation 
(35) bec·)mes 

1 8J _ S(q,T) = [1+ mev(1")2] 8'J 
neO"II eH at H 3kT. 8q' 

+ [3kTe(eq - 3 + 8) - m,V(T)'] 8J 
3kTe 8q 

[
<-3'- eV(T)'] J _1_8'J _ v(T)8J 

+ e 0 He' +3H8T' He8r' (37) 

where we have defined the quantities 

(38) 

and 

ne = 7l"mpl{J(Z)le~' (43) 

.,,·here m == M / ME is the mass accretion rate in Eddington 
units and Ro is the radius of the accretion column. 
We then define the adimensional quantities z and TO 

through the change of variables Z -+ RS0mz and Ro -+ 
Rs0mro, where m == M/M0' while MS0 and RS0 are 
the Sun mass and Schwarzschild radius, respectively. The 
effective vertical optical depth of the accretion column is 
then given by 

1
2 I m (z11+1 - Z;:+I) 

1"(z ) = n'O"lIdZ = C ~ 2 l ' (44) 
Zo .sa TO 1J + 

where C = 2.2 X 10- 3 , and zo is the vertical coordinate at 
the NS surface. 
Im·erting relation (44), we also define the velocity profile 
of the accreting matter as a function of the optical depth 
1" instead of the space variable z 

{J( ) _ oJ {"+1 sdr6(1 + ,* }-.n 
T - - .'~ Zo + Cm (45) 

8 = _1 d{J(T) 
3H d1" ' 

(39) As a second possibility, following BW07, we considered 
the velocity profile 

where {J (1") = v(1")/e, while the dimensionle<iS parameter 
~ is given by (see Eq. [26] in BW07) 

{= 15.8ro 
m 

(40) 

Equatior. (37) is given in the general form (3) and for this 
particular case, we have 

m.v(1"J' 
1'(1") = 1 + 3kT

c 
' 

- 2 

Q(T) = 3kTe(eq - 3 + 6) - m,V(T). 
3kTe • 

n(T) = eq _ 38 _ ev(r)2 
He" ' 

1 
W(T) = 3H' 

Z( ) = _ v(1") 
. T He' 

S-( ) _ S(q, 1") 
q,'T - H . (41) 

{J(1") = -"'1", (46) 

where'" = O.67~/ Zo (see Eq. [32] in BW07). 
Gi":en that in our model the optical depth r represents 
one of the free parameters, once it is provided in input 
together with adimensional accretion column radius TO, 

the accretion rate m must be first computed either from 
equation (44), if {J(1") is defined as in equation (45), or 
from equation (28) in BW07 if {J(1") belongs to equati.on 
(46). This step is necessary to determine the ~ parameter 
(Eq. [40]), and requires fixing the maximum altitude of the 
accretion column Zmax. We assumed Zmax = 2zo, and all 
emerging spectra (see next section) were computed with 
this choice. 

5. Results 

In this section we report some examples of the theoreti­
cal spectra obtained by the numerical solution of equation 
(37) for different sets of the physical quantities that define 
the system. We consider': BB seed photon spectrum at 
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given teraperature kTbb with exponential spatial distribu­
tion across the vertical direction, according to 

kT3X 3 
S(x, T) = Cne-

r 
e'To"';'" " _ l' (47) 

with the normalization constant defined as en 
~ml Dfo, where Rkm and DlO are the BB emitting area in 
kilomete:-s and the source distance in units of 10 kpc, re­
spectively. The spectra were computed using the velocity 
profiles defined in equations (45) and (46), respectively. 
The common parameters for both cases are consequently 
the BB temperature kTbb, the electron temperature kTe, 
the optical depth T, the aibedo at the inner surface A 
and the radius of the accreting column roo On the other 
hand, for fJ(T) belonging to equation (45), additional pa­
rameters are the index "1 and the terminal velocity at the 
star surfBCe flo. We first present the results [or this second 
physical ~ase. 

In Fig. 1 we show the emerging spectra for different 
values of the electron temperature kTe and two terminal 
velocitieE fJo = 0.1 and fJo = 0.64. As expected, both times 
higher vclues of kT. produce flatter spectra and push the 
cut-off er.ergy Ee to higher energies; on the other ha...YJ.d, the 
bulk contribution as a second channel of Comptonization 
depends on the value of kTe. The two extreme temperature 
values reported here, kT. = 5 keY and kT. = 50 keY, 
are parti-::ularly instructive: for low electron temperatures 
the spectrum changes [rom BB-like v!hen fJo = 0.1 to a 
cut-off power law with E, ~ 30 keY when fJo = 0.64, 
while the spectral change is much less enhanced for a hot 
plasma. These can be considered as typical examples of 
bulk-dominated and thermal-dominated Comptonization 
spectra, respectively. 

Thgether with the electron temperature, the optical 
depth T 's an important parameter that plays a key role 
in determining the spectral slope and cut-off energy, as 
clearly shm\'ll in Fig. 2. We note that in Fig. 1 and Fig. 2 
the index of the velocity profile was chosen to be '1 = 0.5, 
typical 01 accretion onto a compact object where gravity 
and radiation pressure are the only force terms that de­
termine the dynamical configuration. Here, the terminal 
,"'lue of the matter velocity fJo depends on the ratio of 
the radiative and gravitational forces , provided the con­
dition W,I /IF.I ~ 1 is satisfied. This relatively simple 
approach is valid for low values of optical depth T, while 
when T > 1 radiative transfer becomes important and the 
problem requires in principle a more accurate radiation­
hydrodylOamics treatment. 

It is outside the scope o[ this paper to compute the 
exact velocity profile for accreting matter under the pres­
ence of a strong radiation field in a high optical depth 
environment. We merely introduced a simple parametriza­
tion [or I:lodifying the velocity field by changing the index 
TJ, with f1e results shown in Fig. 3, for two diffflrent val­
ues of th~ electron temperature kTe . As Fig. 3 shows, the 
lo\'.'er the value o[ 1/, the harder the spectrum: this behav­
ior can be explained in a quantitative and a qualitative 

way. Indeed, as '1 increases, the velocity profile fJ(z) be­
comes sharper, and for a fixed terminal velocity /30, elec­
tron temperature kT. , and optical depth T, while photons 
diffuse through the bounded medium, on average the en­
ergy of the electrons (caused by their Maxwellian plus 
bulk motion) will be lower, and consequently the net en­
ergy gain of the photons due to inverse Compton will be 
less. From the mathematical point of view, it is worth 
mentioning that Mastichiadis & Kylafis (1992, hereafter 
MK92) reported the anal~·tical solution of the RTE in 
the Fokker-Planck approximation with the variable sep­
aration method for spherical accretion without magnetic 
field in the limit To = O. Assuming a general velocity pro­
file fJ, oc r-", the authors showed that the spectral index 
of the kth-Comptonization order emerging spectrum yields 
"k = 3 + 3>'k/(2 - '1) (see Eq. [1]), where >'k is the k'h_ 
eigenvalue of the space operator. Using equation (B12) of 
MK92, it follows immediately that as '1 increases, the spec­
tral index "'k increases as well. This mathematical result 
in terms of spectral formation can be considered as general 
in the framework of the FP treatment, and is accordingly 
qualitatively meaningful for our research. 

We also emphasize that analytical solutions for '1 '" 0.5 
have been possible [or MK92 only because of the condition 
To = 0, which drops the thermal Comptonization operator 
in the RTE, while when T. > 0 this is possible only for 
'1 = 0.5 (TMK97, FOB). 

In Fig. 4 we sho\,1 results for different terminal bulk ve­
locities Po for two electron temperature values. The figure 
can be considered an extension and completion of Fig. 1 
because more values of f30 are shown to better appreciate 
the induced changes in the emerging spectra. 

The spectral modifications as a result o[ different val­
ues of the albedo A at the inner surface are instead shown 
in Fig. 5, where we explored full absorption (A = 0) and 
full reflection (A = 1), together with other intermediate 
values. In the framework o[ a physical link to astrophysical 
objects it would be natural to associate a BH to the condi­
tion A = 0 and a NS to the condition A = 1, respectively 
(Titarchuk & Fiorito 2004; Farinelli & Titarchuk 2011), 
even though this latter assumption may be considered 
an oversimplification of the problem. A most realistic ap­
pToach would consist indeed in an energy-dependent treat­
ment of the albedo, a problem that could be faced only 
with Montecarlo simulations, with the additional compli­
cations arising from a detailed treatment of the star pho­
tosphere (surface) properties. 

For our unavoidably simplified assumptions, the net 
effect of increasing values of A is a progressive flattening of 
the emerging spectra. This is physically explalned because 
when A > 0, a fraction of photons (which becomes 100% 
when A=I) suffers on average more scattering with respect 
to A = O. Qualitatively, the spectral modification leads in 
the same direction as an enhanced optical depth of the 
system. 

The last parameter that strongly influences the spec­
tral formation is the radius of the accretion column TO, 

whose effects are shown in Fig. 6. Indeed, following the 
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BW07 prescription, the mean escape time for photons 
using the diffusion approximation tesc oc T~ (see Eq. 
[36]) . On the other hand, both the bulk and thermal 
Comptonization parameters (!/bulk and Yth, respectively) 
are related to the mean number of scatterings that pho­
tons experience in the medium via 

Ybulk ::::::I N~~lk(bulk l 

Yth ~ N!e(th , 

(48) 

where N~~Ik, (bulk I N!~ and (th are the averaged number 
of scatte!'ings and the fraction energy gain per scattering 
for bulk and thermal Comptonization, respectively. Both 
N~~lk and N~~ are of course also proportional to tesc (see 
Eqs. [94]-[97] in BW07). 

Evidently therefore, for fixed velocit_· profile parame­
ters d and 7) (see Eq. [42]), once the optical depth T is de­
fined (see Eq. [44]), to keep its value constant for increas­
ing TO (as reported in Fig. 6) , the accretion rate m must 
also increase in a way to keep the ratio m/r~ constant. 
Combining equation (36) and (43) yields t,,,, ()( m, which 
in turn leads to an enhancement of the Comptonization 
parameters Ybulk and Yth in equation (49) with a harden­
ing of the spectral shape. 

Considering now the velocity profile defined in equa­
tion (46), we see that the results are qualitatively the same 
as in equation (45) as far as the spectral modifications in­
duced by variations of kTe are concerned (Fig. 7) , T (Fig. 
8) and A (Fig. 9), respectively. But there are opposite ef" 
fects that are induced in the emerging spectra b:v different 
values of the accretion column radius ~'o for the velocity 
profile here considered. Indeed, using equation (40) and 
the definition of T in equation (28) of BW07, which al­
lows us to express the accreting matter velocity in terms 
of the z-coordinate, in spite of the optical depth T , it 
is straightforward to see t hat f3(z) DC ro 1/2. In particu­
lar, if zo = 2.42 and Zmax = 2zo we have f3max=0.60 for 
ro = 0.1, f3max=0.38 for TO = 0.25, f3max=O.27 for TO = 0.5 
and f3max=0.2 for TO = I, respectively. Note that because 
equation (46) describes matter that stagnates at the star 
surface, here f3max represents the velocity at the accretion 
column altitude Zrnax. In other words, while using equa­
tion (45), the choice of TO does not modify t he ·.-elocit:r 
field of the accreting matter, which is only determined by 
the choice of f30 and '1, for (46) as TO increases the bulk 
contribution to the spectral formation becomes less impor­
tant, and this drop is not compensated for by the increase 
of the photon mean escape time tcSC ) which, as explained 
above, would instead contribute to spectral hardening. 

6. Implementation in the XSPEC package 

Our model will be publically available and distributed as 
a contributed model to the official XSPECI web page. 
In Table 1 we report a summary of the free parameters of 
the model with their physical meaning. The code is written 

1 http://heasarc.nasa..gov / xanadu/ xspec/ newrnodels.html 

Table 1. Parameter description of the XSPEC model COMPMAG. 

Parameter 

kTbb 
kT. 
T 

~ 

~ 

r. 
A 
Flag 

Norm 

Units 

(keY) 
(keY) 

Description 

Seed photon blackbody temperature 
Electron temperature 
Optical depth of the accretion column 
Index of the velocity profile (Eq. [45]) 
Tenninal velocity a.t the NS surface 
(Eq. [45]) 
Radius of the accretion column in 
units of the NS Schwarzschild ra.dius 
Albedo at the NS surface 
= I, (3(T) from equation (45) 
= 2, (3(T) from equation (46) 
R~m/D~o 

using C-language, and can be easily installed following the 
standard procedure reported in the official XSPEC manual 
and in the brief cookbook, which will be delivered together 
with the source code. As a general concern for users, we 
pOint out that usually the emerging spectrum obtained 
from the Comptonization of a seed photon population with 
any given energy distribution S(E) can be presented as 
the sum of the seed spectrum and its convolution with 
the scattering Green's function G(E, Eo) of the electron 
plasma, each with their relative weight, according to the 
general formalism 

F(E) = A
Gn 

[S(E) + A x S(E). G(E, Eo)], (49) 
+1 

where Gn is a normalization constant. The ratio A/(A+1) 
is the Comptonization fraction, and its value qualitatively 
determines the contribution to the total spectrum of the 
Comptonized photons. The value of A, here not to be con­
fused with the albedo, may depend on seyeral geomet­
rical and physical factors, such as the spatial seed pho­
ton distribution inside the system configuration (see Fig. 
4 in TMK97). The lower the value of A, the more en­
hanced the direct seed photon spectrum S(E). Examples 
of XSPEC models that use the definition in equation (49) 
are BMC (TMK97) and COMPTB (F08). Either model, how­
ever, does not solve the full RTE including the photon 
spatial diffusion and distribution, the latter of which is an 
unknown quantity that is phenomenologically described 
through the continuum parameter 10g(A). On the other 
hand, it is not possible to change the value of 10g(A) ar­
bitrarily in our present model, i.e., according to the ob­
served spectra. Its value is implicitly determined once the 
seed photon spatial distribution is fixed. 

We presented the results of simulated spectra assum­
ing an exponential distribution over T for S(E), which 
was assumed to be a BBj then, the transition from the 
low-energy part of the spectrum (the Rayleigh regime for 
E ::; 3kTbb) to the high-energy (Comptonized) powerlaw 
shape is almost smooth, which corresponds approximately 
to A » 1 in equation (49). Other seed photons spatial 
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distributions can produce a different onset between the 
BB peak and the powerlaw-like regime. In general, for 
observed spectra where a direct and enhanced BB-like 
component is required by the fit, our claim is to model 
the source continuum with modelization of the type BB + 
COMPMAG by preferably keeping equal to each other the 
temperatures of the direct and Comptonized BB compo­
nent. 

7. Conclusions 

We have developed a numerical code for solving elliptic 
partial differential equations based on a relaxation method 
with finite differences. In particular 1 we reported a spe­
cific application of the algorithm to the radiative transfer 
equation in the Fokker-Planck approximation, which is of 
particular interest for high-energy astrophysical applica­
tions. We considered cylindrical accretion onto the polar 
cap of a magnetized neutron star) using the mathemati­
cal formulation of the problem reported in Becker & Wolff 
(2007) with some modifications. Specifically, we included 
the second-order bulk Comptonization term in the scatter­
ing operator and we considered different velocity profiles 
for the accreting matter. 

The code for the computation of the emerging spec­
tra in this configuration has been written with the aim 
to implement it in the XSPEC package and will be deliv­
ered to the scientific community. Because angle-averaged 
cross-sections caused by the magnetic field were included, 
the model is suitable to be applied to the observed spectra 
of sources where most of spectral forma.tion is claimed to 
form close to a NS with high magnetic field (B ;;:; 1012 G), 
such as accreting X-ra~l pulsars and supergiant fast X-rav 
transients. Of course there are some unavoidable simplifi­
cations in the model, such as the assumption of constant 
electron temperature of the accretion column. We note, 
however, that the isothermal condition is typical of any 
Comptonization model implemented in XSPEC because it 
is fundamental for users to reach a compromise bet\\-een 
the accuracy of the physical treatment and the computa­
tional speed. 'More accurate theoretical ir.vestigations of 
the accretion processes can be performed only with MHD 
simulations performed through PC cluster-computing re­
sources, which are beyond the scope of the present work. 

As in many theoretical models, the number of available 
free parameters is higher than the number of the observ­
able ones. Therefore a correct working approach is to keep 
some parameters fixed during the X-ray spectral fitling 
procedure to avoid degel:eracy. 

If this model is used in any publication, we kindly ask 
the authors to cite this paper in the reference list. 

Acknowledgements. \\-e acknowledge financial contribution 
from the agreement ASI-INAF 1/009/10/0. 
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Table A.!. Continued. 

NARVAL Mar 2007 08:59:01 450-1250 
,Ori A NARVAL Oct 18th 2007 00:52:56 48x4 x20 780 990 

NARVAL Oct 19· 2007 04:35:04 8x4x40 1010 - 1080 
NARVAL Oct 20· 2007 00:59:39 44x4 x 40 1220 - 1470 
NARVAL Oct 21" 2007 23:06:15 48 x4x 40 810 - 1460 
NARVAL Oct 22'" 2007 23:45:52 48x4x40 1090-1480 
NARVAL Oct 23rd 2007 23:13:45 48x4x40 1030 -1480 
NARVAL Oct 24· 2007 23:58:34 48x4x40 1200 -1470 

HD 57682 ESPADONS May 4th 2009 06:05:55 4 x 600 500-1130 
ESPADONS May 5th 2009 06:22:17 4x 540 450-1000 
ESPADONS May 7'b 2009 06:46:41 4 x 540 350-700 
ESPADONS May 8· 2009 06:21:09 4 x 540 350- 800 
ESPADONS May 9" 2009 06:20:36 4 x 540 3~ 

TSoo ESPADONS May 23id 2005 09:14:25 4x60 700-1550 
ESPADONS Sop 20" 2005 05:01 :56 4 x 30 600- 1200 
ESPADONS Aug 51b 2006 05:25:22 4 x 30 500- 1150 
ESPADONS Mar41b 2007 16:23:15 4 x 30 700-1350 
ESPADONS Jun 29th 2008 08:03:07 4x45 400-1050 


