405 research outputs found
Comprehensive data infrastructure for plant bioinformatics
The iPlant Collaborative is a 5-year, National Science Foundation-funded effort to develop cyberinfrastructure to address a series of grand challenges in plant science. The second of these grand challenges is the Genotype-to- Phenotype project, which seeks to provide tools, in the form of a web-based Discovery Environment, for understanding the developmental process from DNA to a full-grown plant. Addressing this challenge requires the integration of multiple data types that may be stored in multiple formats, with varying levels of standardization. Providing for reproducibility requires that detailed information documenting the experimental provenance of data, and the computational transformations applied to data once it is brought into the iPlant environment. Handling the large quantities of data involved in high-throughput sequencing and other experimental sources of bioinformatics data requires a robust infrastructure for storing and reusing large data objects. We describe the currently planned workflows to be developed for the Genotype-to-Phenotype discovery environment, the data types and formats that must be imported and manipulated within the environment, and we describe the data model that has been developed to express and exchange data within the Discovery Environment, along with the provenance model defined for capturing experimental source and digital transformation descriptions. Capabilities for interaction with reference databases are addressed, focusing not just on the ability to retrieve data from such data sources, but on the ability to use the iPlant Discovery Environment to further populate these important resources. Future activities and the challenges they will present to the data infrastructure of the iPlant Collaborative are also described. © 2010 IEEE
Analysis of 101 nuclear transcriptomes reveals 23 distinct regulons and their relationship to metabolism, chromosomal gene distribution and co-ordination of nuclear and plastid gene expression
Post-endosymbiotic evolution of the proto-chloroplast was characterized by gene transfer to the nucleus. Hence, most chloroplast proteins are nuclear-encoded and the regulation of chloroplast functions includes nuclear transcriptional control. The expression profiles of 3292 nuclear Arabidopsis genes, most of them encoding chloroplast proteins, were determined from 101 different conditions and have been deposited at the GEO database (http://www.ncbi.nlm.nih.gov/geo/) under GSE1160-GSE1260. The 1590 most-regulated genes fell into 23 distinct groups of co-regulated genes (regulons). Genes of some regulons are not evenly distributed among the five Arabidopsis chromosomes and pairs of adjacent, co-expressed genes exist. Except regulons 1 and 2, regulons are heterogeneous and consist of genes coding for proteins with different subcellular locations or contributing to several biochemical functions. This implies that different organelles and/or metabolic pathways are co-ordinated at the nuclear transcriptional level, and a prototype for this is regulon 12 which contains genes with functions in amino acid and carbohydrate metabolism, as well as genes associated with transport or transcription. The co-expression of nuclear genes coding for subunits of the photosystems or encoding proteins involved in the transcription/translation of plastome genes (particularly ribosome polypeptides) (regulons 1 and 2, respectively) implies the existence of a novel mechanism that co-ordinates plastid and nuclear gene expression and involves nuclear control of plastid ribosome abundance. The co-regulation of genes for photosystem and plastid ribosome proteins escapes a previously described general control of nuclear chloroplast proteins imposed by a transcriptional master switch, highlighting a mode of transcriptional regulation of photosynthesis which is different compared to other chloroplast functions. From the evolutionary standpoint, the results provided indicate that functional integration of the proto-chloroplast into the eukaryotic cell was associated with the establishment of different layers of nuclear transcriptional control
Very High Angular Resolution Science with the Square Kilometre Array
Preliminary specifications for the Square Kilometre Array (SKA) call for 25%
of the total collecting area of the dish array to be located at distances
greater than 180 km from the core, with a maximum baseline of at least 3000 km.
The array will provide angular resolution ~ 40 - 2 mas at 0.5 - 10 GHz with
image sensitivity reaching < 50 nJy/beam in an 8 hour integration with 500 MHz
bandwidth. Given these specifications, the high angular resolution component of
the SKA will be capable of detecting brightness temperatures < 200 K with
milliarcsecond-scale angular resolution. The aim of this article is to bring
together in one place a discussion of the broad range of new and important high
angular resolution science that will be enabled by the SKA, and in doing so,
address the merits of long baselines as part of the SKA. We highlight the fact
that high angular resolution requiring baselines greater than 1000 km provides
a rich science case with projects from many areas of astrophysics, including
important contributions to key SKA science.Comment: 13 pages, 6 figure
Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: a case for Caustic Radio Emission?
We report the detection of pulsed gamma-ray emission from the fast
millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20
(J1959+2048) using 18 months of survey data recorded by the \emph{Fermi} Large
Area Telescope (LAT) and timing solutions based on radio observations conducted
at the Westerbork and Nan\c{c}ay radio telescopes. In addition, we analyzed
archival \emph{RXTE} and \emph{XMM-Newton} X-ray data for the two MSPs,
confirming the X-ray emission properties of PSR B1937+21 and finding evidence
() for pulsed emission from PSR B1957+20 for the first time. In
both cases the gamma-ray emission profile is characterized by two peaks
separated by half a rotation and are in close alignment with components
observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and
J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks
in different energy bands. The modeling of the radio and gamma-ray emission
profiles suggests co-located emission regions in the outer magnetosphere.Comment: Accepted for publication in the Astrophysical Journa
Instability of Plastid DNA in the Nuclear Genome
Functional gene transfer from the plastid (chloroplast) and mitochondrial genomes to the nucleus has been an important driving force in eukaryotic evolution. Non-functional DNA transfer is far more frequent, and the frequency of such transfers from the plastid to the nucleus has been determined experimentally in tobacco using transplastomic lines containing, in their plastid genome, a kanamycin resistance gene (neo) readymade for nuclear expression. Contrary to expectations, non-Mendelian segregation of the kanamycin resistance phenotype is seen in progeny of some lines in which neo has been transferred to the nuclear genome. Here, we provide a detailed analysis of the instability of kanamycin resistance in nine of these lines, and we show that it is due to deletion of neo. Four lines showed instability with variation between progeny derived from different areas of the same plant, suggesting a loss of neo during somatic cell division. One line showed a consistent reduction in the proportion of kanamycin-resistant progeny, suggesting a loss of neo during meiosis, and the remaining four lines were relatively stable. To avoid genomic enlargement, the high frequency of plastid DNA integration into the nuclear genome necessitates a counterbalancing removal process. This is the first demonstration of such loss involving a high proportion of recent nuclear integrants. We propose that insertion, deletion, and rearrangement of plastid sequences in the nuclear genome are important evolutionary processes in the generation of novel nuclear genes. This work is also relevant in the context of transgenic plant research and crop production, because similar processes to those described here may be involved in the loss of plant transgenes
First detection of a VHE gamma-ray spectral maximum from a Cosmic source: H.E.S.S. discovery of the Vela X nebula
The Vela supernova remnant (SNR) is a complex region containing a number of
sources of non-thermal radiation. The inner section of this SNR, within 2
degrees of the pulsar PSR B0833-45, has been observed by the H.E.S.S. gamma-ray
atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from
an extended region to the south of the pulsar, within an integration region of
radius 0.8 deg. around the position (RA = 08h 35m 00s, dec = -45 deg. 36'
J2000.0). The excess coincides with a region of hard X-ray emission seen by the
ROSAT and ASCA satellites. The observed energy spectrum of the source between
550 GeV and 65 TeV is well fit by a power law function with photon index = 1.45
+/- 0.09(stat) +/- 0.2(sys) and an exponential cutoff at an energy of 13.8 +/-
2.3(stat) +/- 4.1(sys) TeV. The integral flux above 1 TeV is (1.28 +/- 0.17
(stat) +/- 0.38(sys)) x 10^{-11} cm^{-2} s^{-1}. This result is the first clear
measurement of a peak in the spectral energy distribution from a VHE gamma-ray
source, likely related to inverse Compton emission. A fit of an Inverse Compton
model to the H.E.S.S. spectral energy distribution gives a total energy in
non-thermal electrons of ~2 x 10^{45} erg between 5 TeV and 100 TeV, assuming a
distance of 290 parsec to the pulsar. The best fit electron power law index is
2.0, with a spectral break at 67 TeV.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and
Astrophysics letter
Observations of Mkn 421 in 2004 with H.E.S.S. at large zenith angles
Mkn 421 was observed during a high flux state for nine nights in April and
May 2004 with the fully operational High Energy Stereoscopic System (H.E.S.S.)
in Namibia. The observations were carried out at zenith angles of
60--65, which result in an average energy threshold of 1.5 TeV
and a collection area reaching 2~km at 10~TeV. Roughly 7000 photons from
Mkn~421 were accumulated with an average gamma-ray rate of 8 photons/min. The
overall significance of the detection exceeds 100 standard deviations. The
light-curve of integrated fluxes above 2~TeV shows changes of the diurnal flux
up to a factor of 4.3. For nights of high flux, intra-night variability is
detected with a decay time of less than 1 hour. The time averaged energy
spectrum is curved and is well described by a power-law with a photon index
\egamm and an exponential cutoff at \ecut~TeV and an average integral flux
above 2~TeV of 3 Crab flux units. Significant variations of the spectral shape
are detected with a spectral hardening as the flux increases. Contemporaneous
multi-wavelength observations at lower energies (X-rays and gamma-rays above
~GeV) indicate smaller relative variability amplitudes than seen
above 2~TeV during high flux state observed in April 2004.Comment: 5 pages, 4 figures, published in A&
Pathway to the Square Kilometre Array - The German White Paper -
The Square Kilometre Array (SKA) is the most ambitious radio telescope ever
planned. With a collecting area of about a square kilometre, the SKA will be
far superior in sensitivity and observing speed to all current radio
facilities. The scientific capability promised by the SKA and its technological
challenges provide an ideal base for interdisciplinary research, technology
transfer, and collaboration between universities, research centres and
industry. The SKA in the radio regime and the European Extreme Large Telescope
(E-ELT) in the optical band are on the roadmap of the European Strategy Forum
for Research Infrastructures (ESFRI) and have been recognised as the essential
facilities for European research in astronomy.
This "White Paper" outlines the German science and R&D interests in the SKA
project and will provide the basis for future funding applications to secure
German involvement in the Square Kilometre Array.Comment: Editors: H. R. Kl\"ockner, M. Kramer, H. Falcke, D.J. Schwarz, A.
Eckart, G. Kauffmann, A. Zensus; 150 pages (low resolution- and colour-scale
images), published in July 2012, language English (including a foreword and
an executive summary in German), the original file is available via the MPIfR
homepag
A possible association of the new VHE gamma-ray source HESS J1825--137 with the pulsar wind nebula G18.0--0.7
We report on a possible association of the recently discovered very
high-energy -ray source HESS J1825--137 with the pulsar wind nebula
(commonly referred to as G 18.0--0.7) of the year old
Vela-like pulsar PSR B1823--13. HESS J1825--137 was detected with a
significance of 8.1 in the Galactic Plane survey conducted with the
H.E.S.S. instrument in 2004. The centroid position of HESS J1825--137 is offset
by 11\arcmin south of the pulsar position. \emph{XMM-Newton} observations have
revealed X-ray synchrotron emission of an asymmetric pulsar wind nebula
extending to the south of the pulsar. We argue that the observed morphology and
TeV spectral index suggest that HESS J1825--137 and G 18.0--0.7 may be
associated: the lifetime of TeV emitting electrons is expected to be longer
compared to the {\it XMM-Newton} X-ray emitting electrons, resulting in
electrons from earlier epochs (when the spin-down power was larger)
contributing to the present TeV flux. These electrons are expected to be
synchrotron cooled, which explains the observed photon index of , and
the longer lifetime of TeV emitting electrons naturally explains why the TeV
nebula is larger than the X-ray size. Finally, supernova remnant expansion into
an inhomogeneous medium is expected to create reverse shocks interacting at
different times with the pulsar wind nebula, resulting in the offset X-ray and
TeV -ray morphology.Comment: 5 pages, 3 figures, to appear in Astronomy and Astrophysics Letter
- …