32 research outputs found

    Bioelectronics-on-a-chip for cardio myoblast proliferation enhancement using electric field stimulation

    Get PDF
    Background: Cardio myoblast generation from conventional approaches is laborious and time-consuming. We present a bioelectronics on-a-chip for stimulating cells cardio myoblast proliferation during culture. Method: The bioelectronics chip fabrication methodology involves two different process. In the first step, an aluminum layer of 200 nm is deposited over a soda-lime glass substrate using physical vapor deposition and selectively removed using a Q-switched Nd:YVO4 laser to create the electric tracks. To perform the experiments, we developed a biochip composed of a cell culture chamber fabricated with polydimethylsiloxane (PDMS) with a glass coverslip or a cell culture dish placed over the electric circuit tracks. By using such a glass cover slip or cell culture dish we avoid any toxic reactions caused by electrodes in the culture or may be degraded by electrochemical reactions with the cell medium, which is crucial to determine the effective cell-device coupling. Results: The chip was used to study the effect of electric field stimulation of Rat ventricular cardiomyoblasts cells (H9c2). Results shows a remarkable increase in the number of H9c2 cells for the stimulated samples, where after 72 h the cell density double the cell density of control samples. Conclusions: Cell proliferation of Rat ventricular cardiomyoblasts cells (H9c2) using the bioelectronics-on-a-chip was enhanced upon the electrical stimulation. The dependence on the geometrical characteristics of the electric circuit on the peak value and homogeneity of the electric field generated are analyzed and proper parameters to ensure a homogeneous electric field at the cell culture chamber are obtained. It can also be observed a high dependence of the electric field on the geometry of the electrostimulator circuit tracks and envisage the potential applications on electrophysiology studies, monitoring and modulate cellular behavior through the application of electric fields

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    Environmental Acidification Drives S. pyogenes Pilus Expression and Microcolony Formation on Epithelial Cells in a FCT-Dependent Manner

    Get PDF
    Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen responsible for a diverse variety of diseases, including pharyngitis, skin infections, invasive necrotizing fasciitis and autoimmune sequelae. We have recently shown that GAS cell adhesion and biofilm formation is associated with the presence of pili on the surface of these bacteria. GAS pilus proteins are encoded in the FCT (Fibronectin- Collagen-T antigen) genomic region, of which nine different variants have been identified so far. In the present study we undertook a global analysis of GAS isolates representing the majority of FCT-variants to investigate the effect of environmental growth conditions on their capacity to form multicellular communities. For FCT-types 2, 3, 5 and 6 and a subset of FCT-4 strains, we observed that acidification resulting from fermentative sugar metabolism leads to an increased ability of the bacteria to form biofilm on abiotic surfaces and microcolonies on epithelial cells. The higher biofilm forming capacity at low environmental pH was directly associated with an enhanced expression of the genes encoding the pilus components and of their transcription regulators. The data indicate that environmental pH affects the expression of most pilus types and thereby the formation of multicellular cell-adhering communities that assist the initial steps of GAS infection

    Using jasmonates and salicylates to reduce losses within the fruit supply chain

    Get PDF
    The fresh produce industry is constantly growing, due to increasing consumer demand. The shelf-life of some fruit, however, is relatively short, limited by microbial contamination or visual, textural and nutritional quality loss. Thus, techniques for reducing undesired microbial contamination, spoilage and decay, as well as maintaining product’s visual, textural and nutritional quality are in high demand at all steps within the supply chain. The postharvest use of signalling molecules, i.e. jasmonates and salicylates seems to have unexplored potential. The focus of this review is on the effects of treatment with jasmonates and salicylates on the fresh produce quality, defined by decay incidence and severity, chilling injury, maintenance of texture, visual quality, taste and aroma, and nutritional content. Postharvest treatments with jasmonates and salicylates have the ability to reduce decay by increasing fruit resistance to diseases and reducing chilling injury in numerous products. These treatments also possess the ability to improve other quality characteristics, i.e. appearance, texture maintenance and nutritional content. Furthermore, they can easily be combined with other treatments, e.g. heat treatment, ultrasound treatment. A good understanding of all the benefits and limitations related to the postharvest use of jasmonates and salicylates is needed, and relevant information has been reviewed in this paper

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Fe3O4@SiO2 nanoparticles concurrently coated with chitosan and GdOF:Ce3+,Tb3+ luminophore for bioimaging: toxicity evaluation in the zebrafish model

    No full text
    CAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOMCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕESIn this work, design and physiochemical characterization of a biocompatible nanoplatform with integrated photoluminescence and magnetic properties were reported. The potential in vivo toxicity was assessed by exploring the biodistribution of nanoparticles using synchrotron X-ray fluorescence (SXRF) imaging in the zebrafish embryos as a biological model. Their synthesis is accessible through combining magnetic iron oxide nanoparticles with Ce3+, and Tb3+ -doped GdOF luminophore and concurrent capping in situ with chitosan biopolymer. The Fe3O4@SiO2/GdOF:xCe(3+),yTb(3+) nanoparticles manifested near superparamagnetic behavior at 300 K, displaying green emission lines, arising from the characteristic D-5(4) -gt; F-7(J) transitions (J = 6-0) of Tb3+ ion. The limited permeability of the chorion membrane is a critical factor in toxicity screening, a potential approach to remove the chorion and expose the chorion-off zebrafish embryos to nanoscale materials. Accordingly, multifunctional nanoparticles exhibited no acute toxicity to the with-chorion and chorion-off zebrafish embryos up to 100 mg L-1 exposure concentration, suggesting remarkable in vivo biocompatibility. By assessing the nanobio interaction via deep-tissue SXRF imaging, it was visualized that the distribution of Gd and Fe elements had occurred with a roughly constant relative ratio in the whole body of early-stage embryos. However, the elements mapping data revealed a predominant localization of Gd and Fe in the gastrointestinal tract, manifesting bioaccumulation of magneto-luminescent nanoparticles as an integrated nanoplatform in the respective region. This result demonstrated that the particles uptake by embryos were mostly through oral exposure rather than the dermal pathway, offering a new route to oral administration of nanoparticles for future biological and environmental applications.2634143425CAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOMCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕESCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOMCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕES88882.143477/2017-01150104/2017-0Sem informaçãoSem informaçãoThe authors acknowledge the financial support by Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) (No. 88882.143477/2017-01), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) (No. 150104/2017-0), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Instituto Nacional de Ciencia, Tecnologia e Inovacao em Materiais Complexos Funcionais (INCT-Inomat), Centro Brasil-China de Pesquisa e Inovacao em Nanotecnologia (CBC-Nano), and Sistema Nacional de Laboratorios em Nanotecnologias (SisNANO-MCTIC). The World Academy of Sciences for the advancement of science in developing countries (TWAS) (No. 190932/2015-5). We also thank the CNPEM open facilities for users (LMN, LME, LAM, LMG, XRF beamline, and NBT). In special, the authors thank Dr. Jefferson Bettini (LNNano) for the HAADF, STEM and EDS analysis of particles (Figure 1)
    corecore