392 research outputs found

    Nutritional Asymmetries Are Related to Division of Labor in a Queenless Ant

    Get PDF
    Eusocial species exhibit pronounced division of labor, most notably between reproductive and non-reproductive castes, but also within non-reproductive castes via morphological specialization and temporal polyethism. For species with distinct worker and queen castes, age-related differences in behavior among workers (e.g. within-nest tasks versus foraging) appear to result from physiological changes such as decreased lipid content. However, we know little about how labor is divided among individuals in species that lack a distinct queen caste. In this study, we investigated how fat storage varied among individuals in a species of ant (Dinoponera australis) that lacks a distinct queen caste and in which all individuals are morphologically similar and capable of reproduction (totipotent at birth). We distinguish between two hypotheses, 1) all individuals are physiologically similar, consistent with the possibility that any non-reproductive may eventually become reproductive, and 2) non-reproductive individuals vary in stored fat, similar to highly eusocial species, where depletion is associated with foraging and non-reproductives have lower lipid stores than reproducing individuals. Our data support the latter hypothesis. Location in the nest, the probability of foraging, and foraging effort, were all associated with decreased fat storage

    Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing

    Get PDF
    The ocean’s role in regulating atmospheric carbon dioxide on glacial‐interglacial timescales remains an unresolved issue in paleoclimatology. Reduced mixing between deep water masses may have aided oceanic storage of atmospheric CO_2 during the Last Glacial Maximum (LGM), but data supporting this idea have remained elusive. The δ^(13)C of benthic foraminifera indicate the Atlantic Ocean was more chemically stratified during the LGM, but the nonconservative nature of δ^(13)C complicates interpretation of the LGM signal. Here we use benthic foraminiferal δ^(18)O as a conservative tracer to constrain the ratio of meridional transport to vertical diffusivity in the deep Atlantic. Our calculations suggest that the ratio was at least twice as large at the LGM. We speculate that the primary cause was reduced mixing between northern and southern component waters, associated with movement of this water mass boundary away from the zone of intense mixing near the seafloor. The shallower water mass boundary yields an order of magnitude increase in the volume of southern component water, suggesting its residence time may have increased substantially. Our analysis supports the idea that an expanded volume of Antarctic Bottom Water and limited vertical mixing enhanced the abyssal ocean’s ability to trap carbon during glacial times

    Barium in twilight zone suspended matter as a potential proxy for particulate organic carbon remineralization : results for the North Pacific

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1673-1683, doi:10.1016/j.dsr2.2008.04.020.This study focuses on the fate of exported organic carbon in the twilight zone at two contrasting environments in the North Pacific: the oligotrophic ALOHA site (22°45' N 158°W; Hawaii; studied during June–July 2004) and the mesotrophic Subarctic Pacific K2 site (47°N, 161°W; studied during July-August 2005). Earlier work has shown that non-lithogenic, excess particulate Ba (Baxs) in the mesopelagic water column is a potential proxy of organic carbon remineralization. In general Baxs contents were significantly larger at K2 than at ALOHA. At ALOHA the Baxs profiles from repeated sampling (5 casts) showed remarkable consistency over a period of three weeks, suggesting that the system was close to being at steady state. In contrast, more variability was observed at K2 (6 casts sampled) reflecting the more dynamic physical and biological conditions prevailing in this environment. While for both sites Baxs concentrations increased with depth, at K2 a clear maximum was present between the base of the mixed layer at around 50m and 500m, reflecting production and release of Baxs. Larger mesopelagic Baxs contents and larger bacterial production in the twilight zone at the K2 site indicate that more material was exported from the upper mixed layer for bacterial degradation deeper, compared to the ALOHA site. Furthermore, application of a published transfer function (Dehairs et al., 1997) relating oxygen consumption to the observed Baxs data indicated that the latter were in good agreement with bacterial respiration, calculated from bacterial production. These results corroborate earlier findings highlighting the potential of Baxs as a proxy for organic carbon remineralization. The range of POC remineralization rates calculated from twilight zone excess particulate Ba contents did also compare well with the depth dependent POC flux decrease as recorded by neutrally buoyant sediment traps, except in 1 case (out of 4). This discrepancy could indicate that differences in sinking velocities cause an 3 uncoupling of the processes occurring in the fine suspended particle pool from those affecting the larger particle pool which sustains the vertical flux, thus rendering comparison between both approaches risky.This research was supported by Federal Science Policy Office, Brussels through contracts EV/03/7A, SD/CA/03A, the Research Foundation Flanders through grant G.0021.04 and Vrije Universiteit Brussel via grant GOA 22, as well as the US National Science Foundation programs in Chemical and Biological Oceanography

    Southwest Atlantic water mass evolution during the last deglaciation

    Full text link
    The rise in atmospheric CO2 during Heinrich Stadial 1 (HS1; 14.5–17.5 kyr B.P.) may have been driven by the release of carbon from the abyssal ocean. Model simulations suggest that wind‐driven upwelling in the Southern Ocean can liberate 13C‐depleted carbon from the abyss, causing atmospheric CO2 to increase and the δ13C of CO2 to decrease. One prediction of the Southern Ocean hypothesis is that water mass tracers in the deep South Atlantic should register a circulation response early in the deglaciation. Here we test this idea using a depth transect of 12 cores from the Brazil Margin. We show that records below 2300 m remained 13C‐depleted until 15 kyr B.P. or later, indicating that the abyssal South Atlantic was an unlikely source of light carbon to the atmosphere during HS1. Benthic δ18O results are consistent with abyssal South Atlantic isolation until 15 kyr B.P., in contrast to shallower sites. The depth dependent timing of the δ18O signal suggests that correcting δ18O for ice volume is problematic on glacial terminations. New data from 2700 to 3000 m show that the deep SW Atlantic was isotopically distinct from the abyss during HS1. As a result, we find that mid‐depth δ13C minima were most likely driven by an abrupt drop in δ13C of northern component water. Low δ13C at the Brazil Margin also coincided with an ~80‰ decrease in Δ14C. Our results are consistent with a weakening of the Atlantic meridional overturning circulation and point toward a northern hemisphere trigger for the initial rise in atmospheric CO2 during HS1.Key PointsDeep SW Atlantic was unlikely source of light carbon to atmosphere during HS1Mid‐depth isotopic anomalies due to change in northern component waterNorthern component water had robust influence in South Atlantic during HS1Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111970/1/palo20190.pd

    Task-Based Model Observer Assessment of A Partial Model-Based Iterative Reconstruction Algorithm in Thoracic Oncologic Multidetector CT.

    Get PDF
    To investigate the impact of a partial model-based iterative reconstruction (ASiR-V) on image quality in thoracic oncologic multidetector computed tomography (MDCT), using human and mathematical model observers. Twenty cancer patients examined with regular-dose thoracic-abdominal-pelvic MDCT were retrospectively included. Thoracic images reconstructed using a sharp kernel and filtered back-projection (reference) or ASiR-V (0-100%, 20% increments; follow-up) were analysed by three thoracic radiologists. Advanced quantitative physical metrics, including detectability indexes of simulated 4-mm-diameter solid non-calcified nodules and ground-glass opacities, were computed at regular and reduced doses using a custom-designed phantom. All three radiologists preferred higher ASiR-V levels (best = 80%). Increasing ASiR-V substantially decreased noise magnitude, with slight changes in noise texture. For high-contrast objects, changing the ASiR-V level had no major effect on spatial resolution; whereas for lower-contrast objects, increasing ASiR-V substantially decreased spatial resolution, more markedly at reduced dose. For both high- and lower-contrast pulmonary lesions, detectability remained excellent, regardless of ASiR-V and dose levels, and increased significantly with increasing ASiR-V levels (all p < 0.001). While high ASiR-V levels (80%) are recommended to detect solid non-calcified nodules and ground-glass opacities in regular-dose thoracic oncologic MDCT, care must be taken because, for lower-contrast pulmonary lesions, high ASiR-V levels slightly change noise texture and substantially decrease spatial resolution, more markedly at reduced dose

    Repeated injections of 131I-rituximab show patient-specific stable biodistribution and tissue kinetics.

    Get PDF
    PURPOSE: It is generally assumed that the biodistribution and pharmacokinetics of radiolabelled antibodies remain similar between dosimetric and therapeutic injections in radioimmunotherapy. However, circulation half-lives of unlabelled rituximab have been reported to increase progressively after the weekly injections of standard therapy doses. The aim of this study was to evaluate the evolution of the pharmacokinetics of repeated 131I-rituximab injections during treatment with unlabelled rituximab in patients with non-Hodgkin's lymphoma (NHL). METHODS: Patients received standard weekly therapy with rituximab (375 mg/m2) for 4 weeks and a fifth injection at 7 or 8 weeks. Each patient had three additional injections of 185 MBq 131I-rituximab in either treatment weeks 1, 3 and 7 (two patients) or weeks 2, 4 and 8 (two patients). The 12 radiolabelled antibody injections were followed by three whole-body (WB) scintigraphic studies during 1 week and blood sampling on the same occasions. Additional WB scans were performed after 2 and 4 weeks post 131I-rituximab injection prior to the second and third injections, respectively. RESULTS: A single exponential radioactivity decrease for WB, liver, spleen, kidneys and heart was observed. Biodistribution and half-lives were patient specific, and without significant change after the second or third injection compared with the first one. Blood T(1/2)beta, calculated from the sequential blood samples and fitted to a bi-exponential curve, was similar to the T(1/2) of heart and liver but shorter than that of WB and kidneys. Effective radiation dose calculated from attenuation-corrected WB scans and blood using Mirdose3.1 was 0.53+0.05 mSv/MBq (range 0.48-0.59 mSv/MBq). Radiation dose was highest for spleen and kidneys, followed by heart and liver. CONCLUSION: These results show that the biodistribution and tissue kinetics of 131I-rituximab, while specific to each patient, remained constant during unlabelled antibody therapy. RIT radiation doses can therefore be reliably extrapolated from a preceding dosimetry study

    Using the past to constrain the future: how the palaeorecord can improve estimates of global warming

    Full text link
    Climate sensitivity is defined as the change in global mean equilibrium temperature after a doubling of atmospheric CO2 concentration and provides a simple measure of global warming. An early estimate of climate sensitivity, 1.5-4.5{\deg}C, has changed little subsequently, including the latest assessment by the Intergovernmental Panel on Climate Change. The persistence of such large uncertainties in this simple measure casts doubt on our understanding of the mechanisms of climate change and our ability to predict the response of the climate system to future perturbations. This has motivated continued attempts to constrain the range with climate data, alone or in conjunction with models. The majority of studies use data from the instrumental period (post-1850) but recent work has made use of information about the large climate changes experienced in the geological past. In this review, we first outline approaches that estimate climate sensitivity using instrumental climate observations and then summarise attempts to use the record of climate change on geological timescales. We examine the limitations of these studies and suggest ways in which the power of the palaeoclimate record could be better used to reduce uncertainties in our predictions of climate sensitivity.Comment: The final, definitive version of this paper has been published in Progress in Physical Geography, 31(5), 2007 by SAGE Publications Ltd, All rights reserved. \c{opyright} 2007 Edwards, Crucifix and Harriso
    corecore