1,073 research outputs found

    Prediction of the diurnal change using a multimodel superensemble. Part I: Precipitation

    Get PDF
    Modeling the geographical distribution of the phase and amplitude of the diurnal change is a challenging problem. This paper addresses the issues of modeling the diurnal mode of precipitation over the Tropics. Largely an early morning precipitation maximum over the oceans and an afternoon rainfall maximum over land areas describe the first-order diurnal variability. However, large variability in phase and amplitude prevails even within the land and oceanic areas. This paper addresses the importance of a multimodel superensemble for much improved prediction of the diurnal mode as compared to what is possible from individual models. To begin this exercise, the skills of the member models, the ensemble mean of the member models, a unified cloud model, and the superensemble for the prediction of total rain as well as its day versus night distribution were examined. Here it is shown that the distributions of total rain over the earth (tropical belt) and over certain geographical regions are predicted reasonably well (RMSE less than 18) from the construction of a multimodel superensemble. This dataset is well suited for addressing the diurnal change. The large errors in phase of the diurnal modes in individual models usually stem from numerous physical processes such as the cloud radiation, shallow and deep cumulus convection, and the physics of the planetary boundary layer. The multimodel superensemble is designed to reduce such systematic errors and provide meaningful forecasts. That application for the diurnal mode appears very promising. This paper examines some of the regions such as the Tibetan Plateau, the eastern foothills of the Himalayas, and the Amazon region of South America that are traditionally difficult for modeling the diurnal change. In nearly all of these regions, errors in phase and amplitude of the diurnal mode of precipitation increase with the increased length of forecasts. Model forecast errors on the order of 6-12 h for phase and 50 for the amplitude are often seen from the member models. The multimodel superensemble reduces these errors and provides a close match (RMSE < 6 h) to the observed phase. The percent of daily rain and their phases obtained from the multimodel superensemble at 3-hourly intervals for different regions of the Tropics showed a closer match (pattern correlation about 0.4) with the satellite estimates. This is another area where the individual member models conveyed a much lower skill

    Cross border mergers and acquisitions and default risk

    Get PDF
    Using a cross-country sample of mergers and acquisitions, we examine the role of cultural, institutional, geographic and managerial factors on post-merger default risk. We find that cultural factors, especially the relative difference in uncertainty avoidance between the acquiring and target country, play a significant role in affecting post-merger default risk. Furthermore, we find that institutional quality affects the post-merger default risk of acquiring firms. In contrast to the prior research we do not find any evidence indicating that managerial incentives drive post-merger default risk changes. Also, we do not find any evidence indicating the relevance of geographic distance on default risk

    Evaluation of several different planetary boundary layer schemes within a single model, a unified model and a multimodel superensemble

    Get PDF
    This paper addresses the forecasts of latent heat fluxes from five different formulations of the planetary boundary layer (PBL). Different formulations are deployed within the Florida State University global spectral model. Hundreds of short range forecast experiments are carried out using daily data sets for summer 2002 with each model. The primary goal of this study is to compare the performance of the diverse family of PBL algorithms for the latent heat fluxes within the PBL. Benchmark fluxes are calculated from the vertical integrals of Yanai's formulation of the apparent moisture sink and a precipitation using Physical Initialization. This provides indirectly observed estimates of the vertical fluxes of latent heat in the PBL. This comparison reveals that no single scheme shows a global spread of improvement over other models for forecasts of latent heat fluxes in the PBL. Among these diverse models the turbulent kinetic energy based closure provides somewhat better results. The construction of a multimodel superensemble provides a synthesis of these different PBL formulations and shows improved forecasts of the surface fluxes. A single unified model utilizing weighted PBL algorithms where all the five schemes are retained within a single model shows some promise for improving a single model

    Prediction of the diurnal cycle using a multimodel superensemble. Part II: Clouds

    Get PDF
    This study addresses the issue of cloud parameterization in general circulation models utilizing a twofold approach. Four versions of the Florida State University (FSU) global spectral model (GSM) were used, including four different cloud parameterization schemes in order to construct ensemble forecasts of cloud covers. Next, a superensemble approach was used to combine these model forecasts based on their past performance. It was shown that it is possible to substantially reduce the 1-5-day forecast errors of phase and amplitude of the diurnal cycle of clouds from the use of a multimodel superensemble. Further, the statistical information generated in the construction of a superensemble was used to develop a unified cloud parameterization scheme for a single model. This new cloud scheme, when implemented in the FSU GSM, carried a higher forecast accuracy compared to those of the individual cloud schemes and their ensemble mean for the diurnal cycle of cloud cover up to day 5 of the forecasts. This results in a 5-10 W m-2 improvement in the root-mean-square error to the upward longwave and shortwave flux at the top of the atmosphere, especially over deep convective regions. It is shown that while the multimodel superensemble is still the best product in forecasting the diurnal cycle of clouds, a unified cloud parameterization scheme, implemented in a single model, also provides higher forecast accuracy compared to the individual cloud models. Moreover, since this unified scheme is an integral part of the model, the forecast accuracy of the single model improves in terms of radiative fluxes and thus has greater impacts on weather and climate time scales. This new cloud scheme will be tested in real-time simulations

    Thermohaline mixing and the photospheric composition of low-mass giant stars

    Get PDF
    We compute full evolutionary sequences of red giant branch stars close to the luminosity bump by including state of the art composition transport prescriptions for the thermohaline mixing regimes. In particular we adopt a self-consistent double-diffusive convection theory, that allows to handle the instabilities that arise when thermal and composition gradients compete against each other, and a very recent empirically motivated and parameter free asymptotic scaling law for thermohaline composition transport. In agreement with previous works, we find that during the red giant stage, a thermohaline instability sets in shortly after the hydrogen burning shell (HBS) encounters the chemical discontinuity left behind by the first dredge-up. We also find that the thermohaline unstable region, initially appearing at the exterior wing of the HBS, is unable to reach the outer convective envelope, with the consequence that no mixing of elements that produces a non-canonical modification of the stellar surface abundances occurs. Also in agreement with previous works, we find that by artificially increasing the mixing efficiency of thermohaline regions it is possible to connect both unstable regions, thus affecting the photospheric composition. However, we find that in order to reproduce the observed abundances of red giant branch stars close to the luminosity bump, thermohaline mixing efficiency has to be artificially increased by about 4 orders of magnitude from that predicted by recent 3D numerical simulations of thermohaline convection close to astrophysical environments. From this we conclude the chemical abundance anomalies of red giant stars cannot be explained on the basis of thermohaline mixing alone.Comment: 7 pages, 6 figures, accepted for publication in A&

    Inhibition of thermohaline mixing by a magnetic field in Ap star descendants: Implications for the Galactic evolution of 3He

    Full text link
    To reconcile the measurements of 3He/H in Galactic HII regions with high values of 3He in a couple of planetary nebulae, we propose that thermohaline mixing is inhibited by a fossil magnetic field in red giant stars that are descendants of Ap stars. We examine the effect of a magnetic field on the salt-finger instability, using a local analysis. We obtain a threshold for the magnetic field of 10^4 - 10^5 Gauss, above which it inhibits thermohaline mixing in red giant stars located at or above the bump. Fields of that order are expected in the descendants of the Ap stars, taking into account the contraction of their core. We conclude that in a large fraction of the descendants of Ap stars thermohaline mixing does not occur. As a consequence these objects must produce 3He as predicted by the standard theory of stellar evolution and as observed in the planetary nebulae NGC3242 and J320. The relative number of such stars with respect to non-magnetic objects that undergo thermohaline mixing is consistent with the statistical constraint coming from observations of the carbon isotopic ratio in red giant stars. It also satisfies the Galactic requirements for the evolution of the 3He abundance.Comment: Accepted for publication in A&A Letters (Vol.476

    Analysis of the shearing instability in nonlinear convection and magnetoconvection

    Get PDF
    Numerical experiments on two-dimensional convection with or without a vertical magnetic field reveal a bewildering variety of periodic and aperiodic oscillations. Steady rolls can develop a shearing instability, in which rolls turning over in one direction grow at the expense of rolls turning over in the other, resulting in a net shear across the layer. As the temperature difference across the fluid is increased, two-dimensional pulsating waves occur, in which the direction of shear alternates. We analyse the nonlinear dynamics of this behaviour by first constructing appropriate low-order sets of ordinary differential equations, which show the same behaviour, and then analysing the global bifurcations that lead to these oscillations by constructing one-dimensional return maps. We compare the behaviour of the partial differential equations, the models and the maps in systematic two-parameter studies of both the magnetic and the non-magnetic cases, emphasising how the symmetries of periodic solutions change as a result of global bifurcations. Much of the interesting behaviour is associated with a discontinuous change in the leading direction of a fixed point at a global bifurcation; this change occurs when the magnetic field is introduced

    Effects of thermohaline instability and rotation-induced mixing on the evolution of light elements in the Galaxy : D, 3He and 4He

    Full text link
    Recent studies of low- and intermediate-mass stars show that the evolution of the chemical elements in these stars is very different from that proposed by standard stellar models. Rotation-induced mixing modifies the internal chemical structure of main sequence stars, although its signatures are revealed only later in the evolution when the first dredge-up occurs. Thermohaline mixing is likely the dominating process that governs the photospheric composition of low-mass red giant branch stars and has been shown to drastically reduce the net 3He production in these stars. The predictions of these new stellar models need to be tested against galaxy evolution. In particular, the resulting evolution of the light elements D, 3He and 4He should be compared with their primordial values inferred from the Wilkinson Microwave Anisotropy Probe data and with the abundances derived from observations of different Galactic regions. We study the effects of thermohaline mixing and rotation-induced mixing on the evolution of the light elements in the Milky Way. We compute Galactic evolutionary models including new yields from stellar models computed with thermohaline instability and rotation-induced mixing. We discuss the effects of these important physical processes acting in stars on the evolution of the light elements D, 3He, and 4He in the Galaxy. Galactic chemical evolution models computed with stellar yields including thermohaline mixing and rotation fit better observations of 3He and 4He in the Galaxy than models computed with standard stellar yields. The inclusion of thermohaline mixing in stellar models provides a solution to the long-standing "3He problem" on a Galactic scale. Stellar models including rotation-induced mixing and thermohaline instability reproduce also the observations of D and 4He.Comment: 12 pages, 9 figures, accepted for publication in A&

    The structure and optical behaviour of pearls

    Get PDF
    The paper embodies a study of the structure of the material composing pearls and of the optical effects which they display. The following topics are dealt with: (1) Birefringence, (2) X-ray-diffraction patterns, (3) The reflection-diffraction spectra, (4) The diffusion haloes of reflection and transmission, (5) The whispering-gallery effect, (6) The spectral character of iridescence and the influence of birefringence thereon, (7) The transmission spectra. The most noteworthy result of the investigation is to show that the diffusive properties of nacre play a major role no less important than that of the reflection by its stratifications in the optics of pearls

    Evaluation of the four elastic constants of some cubic crystals

    Get PDF
    This article does not have an abstract
    corecore