145 research outputs found

    Roughness signature of tribological contact calculated by a new method of peaks curvature radius estimation on fractal surfaces

    Get PDF
    This paper proposes a new method of roughness peaks curvature radii calculation and its application to tribological contact analysis as characteristic signature of tribological contact. This method is introduced via the classical approach of the calculation of radius of asperity. In fact, the proposed approach provides a generalization to fractal profiles of the Nowicki's method [Nowicki. Wear Vol.102, p.161–176,1985] by introducing a fractal concept of curvature radii of surfaces, depending on the observation scale and also numerically depending on horizontal lines intercepted by the studied profile. It is then established the increasing of the dispersion of the measures of that lines with that of the corresponding radii and the dependence of calculated radii on the fractal dimension of the studied curve. Consequently, the notion of peak is mathematically reformulated. The efficiency of the proposed method was tested via simulations of fractal curves such as those described by Brownian motions. A new fractal function allowing the modelling of a large number of physical phenomena was also introduced, and one of the great applications developed in this paper consists in detecting the scale on which the measurement system introduces a smoothing artifact on the data measurement. New methodology is applied to analysis of tribological contact in metal forming process

    Roughness Signature of Tribological Contact Calculated by a New Method of Peaks Curvature Radius Estimation on Fractal Surfaces

    Get PDF
    This paper proposes a new method of roughness peaks curvature radii calculation and its application to tribological contact analysis as characteristic signature of tribological contact. This method is introduced via the classical approach of the calculation of radius of asperity. In fact, the proposed approach provides a generalization to fractal profiles of the Nowicki's method [Nowicki B. Wear Vol.102, p.161-176, 1985] by introducing a fractal concept of curvature radii of surfaces, depending on the observation scale and also numerically depending on horizontal lines intercepted by the studied profile. It is then established the increasing of the dispersion of the measures of that lines with that of the corresponding radii and the dependence of calculated radii on the fractal dimension of the studied curve. Consequently, the notion of peak is mathematically reformulated. The efficiency of the proposed method was tested via simulations of fractal curves such as those described by Brownian motions. A new fractal function allowing the modelling of a large number of physical phenomena was also introduced, and one of the great applications developed in this paper consists in detecting the scale on which the measurement system introduces a smoothing artifact on the data measurement. New methodology is applied to analysis of tribological contact in metal forming process

    Fatigue behavior of a structural steel coated with a WC–10Co–4Cr/Colmonoy 88 deposit by HVOF thermal spraying

    Get PDF
    The fatigue behavior of a SAE 4340 steel, coated with a 50% WC–10Co–4Cr/50% Colmonoy 88 deposit, by high velocity oxygen fuel (HVOF) thermal spray, has been investigated. The change in the maximum alternating stress with the number of cycles to fracture has been described by means of the relationship advanced by Stromeyer. A fractographic analysis has been carried out on some representative fracture surfaces, by means of scanning electron microscopy (SEM) techniques. The mechanical properties of the coating were characterized by means of nanoindentation tests. The results indicate that the coating is highly heterogeneous. Its deposition gives rise to a decrease in the fatigue strength of the substrate of ∼ 30%, in comparison with the uncoated substrate. The decrease in fatigue strength is due to the presence of stress concentrators at the substrate–coating interface, as well as the intrinsic characteristics of the coating

    Human DDX3 functions in translation and interacts with the translation initiation factor eIF3

    Get PDF
    The conserved RNA helicase DDX3 is of major medical importance due to its involvement in numerous cancers, human hepatitis C virus (HCV) and HIV. Although DDX3 has been reported to have a wide variety of cellular functions, its precise role remains obscure. Here, we raised a new antibody to DDX3 and used it to show that DDX3 is evenly distributed throughout the cytoplasm at steady state. Consistent with this observation, HA-tagged DDX3 also localizes to the cytoplasm. RNAi of DDX3 in both human and Drosophila cells shows that DDX3 is required for cell viability. Moreover, using RNAi, we show that DDX3 is required for expression of protein from reporter constructs. In contrast, we did not detect a role for DDX3 in nuclear steps in gene expression. Further insight into the function of DDX3 came from the observation that its major interaction partner is the multi-component translation initiation factor eIF3. We conclude that a primary function for DDX3 is in protein translation, via an interaction with eIF3

    Transient Phenomena in Gene Expression after Induction of Transcription

    Get PDF
    When transcription of a gene is induced by a stimulus, the number of its mRNA molecules changes with time. Here we discuss how this time evolution depends on the shape of the mRNA lifetime distribution. Analysis of the statistical properties of this change reveals transient effects on polysomes, ribosomal profiles, and rate of protein synthesis. Our studies reveal that transient phenomena in gene expression strongly depend on the specific form of the mRNA lifetime distribution

    Optimisation of Over-Expression in E. coli and Biophysical Characterisation of Human Membrane Protein Synaptogyrin 1

    Get PDF
    Progress in functional and structural studies of integral membrane proteins (IMPs) is lacking behind their soluble counterparts due to the great challenge in producing stable and homogeneous IMPs. Low natural abundance, toxicity when over-expressed and potential lipid requirements of IMPs are only a few reasons for the limited progress. Here, we describe an optimised workflow for the recombinant over-expression of the human tetraspan vesicle protein (TVP) synaptogyrin in Escherichia coli and its biophysical characterisation. TVPs are ubiquitous and abundant components of vesicles. They are believed to be involved in various aspects of the synaptic vesicle cycle, including vesicle biogenesis, exocytosis and endocytotic recycling. Even though TVPs are found in most cell types, high-resolution structural information for this class of membrane proteins is still missing. The optimisation of the N-terminal sequence of the gene together with the usage of the recently developed Lemo21(DE3) strain which allows the balancing of the translation with the membrane insertion rate led to a 50-fold increased expression rate compared to the classical BL21(DE3) strain. The protein was soluble and stable in a variety of mild detergents and multiple biophysical methods confirmed the folded state of the protein. Crosslinking experiments suggest an oligomeric architecture of at least four subunits. The protein stability is significantly improved in the presence of cholesteryl hemisuccinate as judged by differential light scattering. The approach described here can easily be adapted to other eukaryotic IMPs

    Supramolecular electrode assemblies for bioelectrochemistry

    Get PDF
    For more than three decades, the field of bioelectrochemistry has provided novel insights into the catalytic mechanisms of enzymes, the principles that govern biological electron transfer, and has elucidated the basic principles for bioelectrocatalytic systems. Progress in biochemistry, bionanotechnology, and our ever increasing ability to control the chemistry and structure of electrode surfaces has enabled the study of ever more complex systems with bioelectrochemistry. This feature article highlights developments over the last decade, where supramolecular approaches have been employed to develop electrode assemblies that increase enzyme loading on the electrode or create more biocompatible environments for membrane enzymes. Two approaches are particularly highlighted: the use of layer-by-layer assembly, and the modification of electrodes with planar lipid membranes

    Reduced response to IKr blockade and altered hERG1a/1b stoichiometryin human heart failure

    Full text link
    Heart failure (HF) claims 250,000 lives per year in the US, and nearly half of these deaths are sudden and presumably due to ventricular tachyarrhythmias. QT interval and action potential (AP) prolongation are hallmark proarrhythmic changes in the failing myocardium, which potentially result from alterations in repolarizing potassium currents. Thus,we aimed to examinewhether decreased expression of the rapid delayed rectifier potassiumcurrent, IKr, contributes to repolarization abnormalities in human HF. Tomap functional IKr expression across the left ventricle (LV), we optically imaged coronary-perfused LV free wall from donor and end-stage failing human hearts. The LV wedge preparation was used to examine transmural AP durations at 80% repolarization (APD80), and treatment with the IKr-blocking drug, E-4031, was utilized to interrogate functional expression. We assessed the percent change in APD80 post-IKr blockade relative to baseline APD80 (ΔAPD80) and found that ΔAPD80s are reduced in failing versus donor hearts in each transmural region, with 0.35-, 0.43-, and 0.41-fold reductions in endo-, mid-, and epicardium, respectively (p = 0.008, 0.037, and 0.022). We then assessed hERG1 isoform gene and protein expression levels using qPCR and Western blot. While we did not observe differences in hERG1a or hERG1b gene expression between donor and failing hearts, we found a shift in the hERG1a:hERG1b isoform stoichiometry at the protein level. Computer simulations were then conducted to assess IKr block under E-4031 influence in failing and nonfailing conditions. Our results confirmed the experimental observations and E-4031-induced relative APD80 prolongationwas greater in normal conditions than in failing conditions, provided that the cellularmodel of HF included a significant downregulation of IKr. In humanHF, the response to IKr blockade is reduced, suggesting decreased functional IKr expression. This attenuated functional response is associated with altered hERG1a:hERG1b protein stoichiometry in the failing human LV, and failing cardiomyoctye simulations support the experimental findings. Thus, of IKr protein and functional expression may be important determinants of repolarization remodeling in the failing human LV.We thank the Translational Cardiovascular Biobank & Repository (TCBR) at Washington University for provision of donor/patient records. The TCBR is supported by the NIH/CTSA (UL1 TR000448), Children's Discovery Institute, and Richard J. Wilkinson Trust. We also thank the laboratory of Dr. Sakiyama-Elbert for the use of the StepOnePlus equipment We appreciate the critical feedback on the manuscript by Dr. Jeanne Nerbonne. This work has been supported by the National Heart, Lung & Blood Institute (NHLBI, R01 HL114395). K. Holzem has been supported by the American Heart Association (12PRE12050315) and the NHLBI (F30 HL114310).Holzem, KM.; Gómez García, JF.; Glukhov, AV.; Madden, EJ.; Koppel, AC.; Ewald, GA.; Trénor Gomis, BA.... (2016). Reduced response to IKr blockade and altered hERG1a/1b stoichiometryin human heart failure. Journal of Molecular and Cellular Cardiology. 96:82-92. https://doi.org/10.1016/j.yjmcc.2015.06.008S82929
    corecore