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Abstract 

This paper proposes a new method of roughness peaks curvature radii calculation 

and its application to tribological contact analysis as characteristic signature of 

tribological contact. This method is introduced via the classical approach of the 

calculation of radius of asperity. In fact, the proposed approach provides a 

generalization to fractal profiles of the Nowicki's method [Nowicki B. Wear Vol.102, 

p.161-176, 1985] by introducing a fractal concept of curvature radii of surfaces, 

depending on the observation scale and also numerically depending on horizontal 

lines intercepted by the studied profile. It is then established the increasing of the 

dispersion of the measures of that lines with that of the corresponding radii and the 

dependence of calculated radii on the fractal dimension of the studied curve. 

Consequently, the notion of peak is mathematically reformulated. The efficiency of 

the proposed method was tested via simulations of fractal curves such as those 

described by Brownian motions. A new fractal function allowing the modelling of a 

large number of physical phenomena was also introduced, and one of the great 

applications developed in this paper consists in detecting the scale on which the 

measurement system introduces a smoothing artifact on the data measurement. New 

methodology is applied to analysis of tribological contact in metal forming process. 

 

Keywords: Roughness, friction, curvature radius, fractal, drawing process, surface 

metrology. 
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1 Introduction 

In general, the physical responses are due to interactions between physical 

processes and some surface characteristic parameters, such as the geometrical 

ones, and in particular, the curvature radius from which an estimate could be easily 

obtained for periodic or stochastic surfaces. However, although its importance is very 

often underestimated, this one appears in the mathematical formulation of numerous 

physical models: in optics, it represents a threshold, under which the reflected beam 

on a surface could not be modelled by the Kirchhoff method, in tribology, it plays an 

important role in the determination of the contact pressure. 

Generally, the calculation of the radius of curvature requires rather smooth curves of 

studied surfaces, however it is not always the case when dealing with fractal 

surfaces, as it was shown in Mandelbrot's works [1, 2]. Furthermore, as all the metric 

parameters relative to a fractal curve depend on the scale of measurement, it thus 

becomes particularly difficult to give a sense to the notion of local radius of curvature 

for fractal surfaces. In tribological contact fractal surface are often used to avoid 

sensibility to scale of measurement [3, 4, 5]. However, some methods thanks to 

Fourier analysis were proposed with the aim of the estimation of the radius of 

curvature [6, 7]. Let us note moreover that, for special classes of surfaces, for which 

the spectrum could be related to the fractal dimension, the curvature radius could be 

estimated. However, restrictive conditions of surfaces, as the self-affinity, as well as 

the existence of artifacts in the Fast Fourier Transform, make that method uncertain. 

Furthermore, the representation of the radius of curvature in the Fourier space has 

not been extensively studied. Numerous questions arise then: What really the radius 

of curvature for a fractal curve means? Does it possess a geometrical meaning? 

What is the interest of its eventual estimation? What could we deduct, from physical 

models, based on the consideration of such a parameter? All these questions show 

the necessity to give a geometrical formulation of the curvature radius for a fractal 

curve. Consequently, in this paper, we suggest establishing, at the same time, the 

dependence of the radius of curvature on the scale under which the studied surface 

is observed, as well as, its relation to the fractal dimension of that surface. So, as the 

properties of the fractal curve are defined from the fractal dimension, the regular non 

fractal surface is then influenced by the fractal dimension of the studied real surface. 
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Consequently, even under a formulation supposing regular surfaces, as the physical 

formulation evoked above, we could not neglect the fractal dimension. To calculate 

this last one, there are various numerical methods, still not giving the same result, 

when they are applied to a modelled surface with known fractal dimension. Due to 

that inconsistency, the method which we should choose is the one presenting the 

same properties as those of the curves used in the physical model. So, if we want to 

estimate the influence of the fractal dimension of a surface on the estimation of the 

radius of curvature, we have to calculate this one, from the last one, with the same 

scale used for the computation. 

This paper is divided into two parts: 

In Part I we first review classical methods of calculation of the radius of curvature, 

and in particular, that of Nowicki's [8] relative to the regular curves, and for which, we 

proceed to an adaptation, before its extension to fractal curves. Then, we introduce a 

new calculation approach for the fractal dimension of surfaces. Its accuracy is tested 

on fractal curves with known fractal dimension, and some mathematical properties of 

the radius of curvature are stated. 

In Part II the proposed method is applied to analysis of tribological contact in metal 

forming process. Variation of peaks curvature radius before and after the process is 

revealing detailed topographical signature of different parts of tribological contact. 

Therefore, the history or contact conditions can be analysed and different zones 

inside the contact area can be distinguished. We also show that proposed method 

could be coupled with an inverse methodology to obtain simulated profiles presenting 

the same morphology as experimental curves measured by tactical profilometer on 

surfaces obtained by polishing. Next presented application is an analysis of artifacts 

introduced by radius of tip during measurement of surface by a stylus profiler. 

 

2 Part I – Mathematical model of Curvature Radius o f a rough surface 

2.1 Model of Curvature Radius 

2.2 A Fractal definition of the Curvature Radii of a Surface 

Let Γ  be the profile of a given rough surface. Γ  can be considered as the graph of a 

continuous function z, defined by 
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[ ] →

֏

z : ,

( )

a b IR

t z t
   (a < b), (1) 

and parameterized by the real variable t, where the parameterization is introduced by 

the function ,γ defined as follows:  

γ Π
γ

→
=֏

:

( ) ( , ( ))

IR

t t t z t
 (2) 

(t,z(t))  represents any point of the real plane Π.  The curvature (t)χ  of the 

parameterized curve led by ,γ  is then defined by: 

χ =
+

3/2' 2

''( )
( )

1 ( )

z t
t

z t
 (3) 

 Therefore, the curvature radius r(t) of the profileΓ at the location t, can be 

written such as: 
( )+

=

3
'2 21 ( )

( )
''( )

z t
r t

z t
 (4) 

with ≠''( ) 0z t  for any [ ]∈ , .t a b Consequently, the mean curvature radius of that 

profile, on the interval [ ], ,a b is then given by:  
[ ]∈

=
− ∫

,

1
( )

t a b

r r t dt
b a

 (5) 

The derivative functions in Eq.3 and Eq.4 are generally estimated by the finite 

differences method, which is far from being stable. Whitehouse [9] then proposed a 

better estimation, by using the polynomial interpolation. However, it was established, 

without using the fractal concept, therefore this method can not be used [10]. Other 

methods based on the Fourier analysis [11] could be used, but they present the 

weakness not to be consistent in numerical calculation. For those reasons, Longuet-

Higgins [12] proposed a statistical method based, respectively, on the distributions of 

the maxima and crossings of the mean level, for a random surface, but this method 

supposes the curvature to be statistically independent of the scanning scale. 

Whitehouse and Archard [13] then proposed a method using the autocorrelation 

function to estimate the curvature statistics. That method was subsequently modified 

by Sales and Thomas, who used the truncated autocorrelation function, according to 

the Maclaurin series expansions [14] . Moalic et al. [10] proposed the application of 

the finite differences method on the modified autocorrelation function, in order to 

estimate the repartition of the curvature of the profile. However, the authors found 

that errors increase with increasing of the wave number. Using now the fractal 
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approach, Ganti and Bhushan [15] found that the curvature of the profile follows a 

power-law χ ∆∝( ) ht f , where hf  is the Nyquist frequency of the surface, related to the 

resolution of the instrument, and where the parameter ∆ is its fractal dimension. This 

theory supposes that the spectrum of the surface follows a power law ( ) ∆−∝ 2 5P f f , 

with hf >>1/L, and where L is the scanning length. However, as noticed by Gallant et 

al. [16] in the context of the estimation of the spectrum, the effect of the smoothing 

due to the measurement, provides yet another factor which limits the size of the 

frequency .hf  However, the condition ( ) ∆−∝ 2 5P f f restricts strongly the use of this 

method, as we could establish it, in the case of a white noise, for which ( )P f is 

constant. 

The common point of all these methods is that they are based on statistical, 

differential or fractal properties, which could be indirectly related to the radius of 

curvature of the studied profile. 
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Figure 1: Definition of xl  and yl  used to calculate the local curvature radius ( )c xr l . 

 

However, contrary to the previous ones, the method proposed by Nowicki [8] allows 

the study of the surface roughness, by introducing a parameter, directly measured 

from the surface: the so-called, radius of asperity (Figure 1), defined as follows:  

= 2 8c x yr l l  (6) 

with = max0.1yl R or ≈ max0.05 ,yl R and where maxR is the maximal range amplitude of 

the profile. This method consists in finding the radius cr  of a circle of canter O, 
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passing by a crest A, and by two other points B and C of the profile; these two last 

ones being distant of xl . The distances which separate the line (B, C), respectively 

from A and from O, are yl  and r- yl  The parameter yl  is considered sufficiently small, 

so that the segment [A, O] is supposed to be perpendicular to [B, C], in its middle I. If 

we now apply Pythagoras' theorem to the triangle OBI, it then follows: 

( ) ( )+ − =
2 2 2/ 2x c y cl r l r  (7) 

Consequently, we get: 

= +
2

2 8
y x

c
y

l l
r

l
 (8) 

Eq. (8) is obtained, assuming that yl  is sufficiently small, and the following condition 

is satisfied: 

<y xl l  (9) 

Nevertheless, some remarks can be drawn for such a method: 

I) The techniques to detect the peaks are not well defined. So, when yl  value is fixed, 

Nowicki's method determines all local peaks (in a discretized case, if − <1i iz z  and 

+> 1i iz z , then iz  corresponds to a peak). In what precedes, it is assumed a uniform 

partition of the interval [a, b], with a grid − −< < < < <0 2 1... .... ,i i Nt t t t  and with 

=≃ ( ), 1,2,..., .i iz z t i N  Then, as yl  values are fixed, there exists for each peak, a 

unique value of xl  giving the following discretized set { }− − + + +1 1 2,..., , , , ,...,i q i i i i i pz z z z z z . 

The peak is retained if − − −< < < <2 1...i q i i iz z z z  and + + +> > > >1 2 ...i i i i pz z z z . This local 

radius curvature will be named Euclidian Radii Curvature with the following notation 

ɶ ( )i ir t . On the other hand, the analytical method supposes that iz  is the maximal peak 

of the non-discretized surface, and implies = ,p q if the peak gets a perfect circular 

shape. Reciprocally, if ≠ ,p q  this last one does not get such a shape. 

II) The threshold used to estimate α= maxyl R  does not have any theoretical 

justification. Indeed, trying to determine the parameter radius of the crest, we have 

α
α

→
=

0
limyl Rt . However, on discretized curves and for yl  sufficiently small, the choice 
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of xl  becomes indeterminate, due to the fact that δ=x xl k , where δx  is the length of 

the sampling interval. Furthermore, because of the stochastic aspect of the profile, 

the three points A, B and C become more and more aligned, when the value of xl  is 

decreasing, implying a dramatic increasing of  the cr  variance estimator. 

III) On experimental profiles, a smoothing effect is realized under a characteristic 

length [17]. For example, if the profile is recorded by a tactile profiler, the recording 

surface is then seen smoother at a length of the same order of magnitude than the tip 

curvature radius. Consequently, for yl  sufficiently small, one has to record the 

curvature radius of the measurement artefacts, and the curvature radii will then be 

wrongly increasing. 

IV) If the surface contains some noise (white or pink), there exists a great probability 

for the Nowicki's algorithm to detect false peaks. Finally, the Radii of curvature get 

erroneous. 

V) If the profile is the result of the combination of different processes acting at various 

scales, the radii of curvature so obtained are different. However, it becomes evident 

that the detection of peaks becomes uncertain and will so favour smaller peaks. 

VI) For physical surfaces possessing a fractal aspect [18, 19, 20, 21], the calculation 

of cr  has no physical sense and the Nowicki's method will lead to different values of 

that parameter, depending on the sampling rate. Furthermore, it is noticed that the 

decreasing of the sampling rate will decrease ɶcr . This confirms that ɶcr  calculated by 

the Nowicki's method have no sense if we postulate that − − −< < < <2 1...i q i i iz z z z  and 

+ + +> > > >1 2 ...i i i i pz z z z  (see appendix A for more detailed justification). 

 

2.2.1 Theoretical relation in proposed method 

For fractal curves, cr  depends on the scale at which the observation is made. And, as 

we postulate that the curvature radii could be defined at a given scale, the Nowicki's 

method has then to be reformulated. We will conserve the notion of xl  without 

imposing any property to the points of the profile that are related to it, since α  cannot 

be fixed without introducing an artefact. For these reasons, we choose to calculate xl  

by the following method: 



Published in Tribology International, Elsevier, Vol.65 (2013) p.235–247. 
http://dx.doi.org/10.1016/j.triboint.2013.03.017 

 - 8 - 

1) We choose a horizontal straight line at the level h that crosses the profile, and we 

built a set of xl  values intercepting the profile. More precisely, 

( ) ijixjijiiii xxlmzmzzzjhz −=<≥≥< +++++++ 11211 ,,,,,,, ⋯  where m  is a number of 

intercepting horizontal lines used in algorithm that are uniformly randomly chosen. 

2) For each ,xl  the local maximal peak (maximum value of profile) is obtained which 

gives yl . More precisely, 

( )
{ }

( ) hzlmzmzzzjhz k
jiiik

yjijiiii −=<≥≥<
+++∈

+++++
⋯

⋯
,,

sup,,,,,,,
21

1211  

3) cr  is then computed from Eq.6, and this process is repeated for all the other 

elements of the set of xl  values. 

4) Another horizontal straight line is chosen randomly and the steps 1 to 3 are 

repeated. 

The detailed algorithm is presented in Figure 2. 
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Figure 2: Algorythm used to calculate the Curvature Radius Estimation on Fractal 
Surface. 
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Theorem 1 : If xl  exists, for all non-constant continuous function f  uniformly 

Hölderian, anti-Hölderian, and defined on a real interval [ ], ,a b one gets, for the fractal 

dimension of the graph fG of f : 

( ) ( )( )
→

∆ =
0

limsup log log
x

f c x x
l

G r l l  (10) 

Rationalization of the approach: As f  is Hölderian in t, with exponent H ( < ≤0 1H ), 

there exists a positive constant c, such that, for any 't : 

( ) ( )− ≤ −' ' H
f t f t c t t  (11) 

Eq.11 follows Hölderian form: [22] 

( )
[ ]

( ) ( ) ( ) H

tttt
tctftftv εε

εε
≤′−′′=

+−∈′′′ ,,
sup,  (12) 

Then if f is uniformly then the constant c is independent of t, by integration over the 

domain of definition T, ( )
[ ]

( ) ( ) H

T tttt
cdttftfTv εε

εε
≤′−′′= ∫

+−∈′′′ ,,
sup,  (12) 

with ∆ ≤ −( ) 2fG H  (13) 

On the other hand, as f  is uniformly anti-Hölderian too, with the same exponent, 

there exists a positive constant ',c independent of t such that, for any :ε  

( ) HcTv εε ′≥,   (14) 

With ∆ ≥ −( ) 2fG H  (15) 

Taking (12) and (14) into account, we can then write, for ε  taking the particular value 

( ),

2
xl t h

 at the level h that crosses the profile (the term 1.2 is due to the fact that 

( )ε,v t  is defining on a ε2  interval from Eq.12): 

( ) ( ) ( ) ( ) ( )     
′≥ ≥     

     

, , ,
,

2 2 2

H H

x x xl t h l t h l t h
c t v t c t  (16) 

[ ]
( ) ( )tftf

tttt
′−′′

+−∈′′′ εε ,,
sup   from Eq.12 is the local range of the function and is identified with 

the height ( ),yl t h  of the peak of width ( ),,htl x  localized in t according to our 

definition. 

 

Then ( ) ( ) 
ε =  

 

,
, ,

2
x

y

l t h
v t l t  and one gets:  
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( ) ( ) ( ) ( ) ( )     
′≥ ≥     

     

, , ,
,

2 2 2

H H

x x x
y

l t h l t h l t h
c t l t c t    (17) 

But, f  being uniformly Hölderian, then c and 'c do not depend on t, and therefore [22]: 

∆ = −( ) 2fG H  (18) 

And summing the same ( ) xx lhtl =,  with h values defined in 
[ ]

( )
[ ]

( )




∈
∈∈

tftfh
TtTt

sup,inf  and 

[ ]Tt ,0∈ , defining a 2D domain ( )xlΩ  with a ( )( )xlA Ω  area (in case of discreet set of 

measured profile points ( )( )xlA Ω  is the size of this set), then : 

( )
( )

( )
( )

( )
( )ω∈Ω ω∈Ω ω∈Ω

     
′ω ≥ ω ≥ ω     

     
∫∫ ∫∫ ∫∫

, , ,
,

2 2 2
x x x

H H

x x x
y

l l l

l t h l t h l t h
c d l t d c d   

and from Eq.12 and Eq.14  

( )( ) ( )
( )

( )( )
ω∈Ω

    ′Ω ≥ ω ≥ Ω    
    

∫∫
,

,
2 2 2

x

H H
xx x

x y x
l

l t hl l
c A l l t d c A l  that can be rewritten by 

the practical forms 
( )( )

( )
( )ω∈Ω

    ′≥ ω ≥    Ω    
∫∫

,1
,

2 2 2
x

H H
xx x

y
x l

l t hl l
c l t d c

A l
 (19) 

where 
( )( )

( )
( )ω∈Ω

 
ω Ω  

∫∫
,1

,
2

x

x
y

x l

l t h
l t d

A l
 represents the mean of all highest peaks of 

xl width and is noted ( )Tll xy ,  . 

 

Then from the definition of the fractal dimension related to the holder exponent [22], it 

can be noted that log logy xH l l≈  and therefore from Eq. 18 we can write 

( ) ( ), 2 log , logf y x xG T l l T l∆ = −  (20) 

Now if ( ) xxy lTll <<,  then ( ) ( )= 2, 8 ,y x x c xl l T l r l T  and we obtain the final result 

( ) ( )( ), 2 log , logf c x xG T r l T l∆ = − .        (21) 

Remarks. 

Experimentally, the fractal dimension ( )∆ fG  is obtained as a slope, by fitting in a log-

log plot the discretized data ( )( )log ,logx c xl r l  performed by our algorithm. If the 

regression line fit well, the experimental data then allow writing: 
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( ) α ∆=c x xr l l  (22) 

So, the relation between xl  and yl  becomes: 

( ) β β α−∆= =2 , 1 8y x xl l l  (23) 

 

An interesting properties linked to the fractal concept is the box counting method. 

More precisely, the box counting is a method of gathering data for analyzing complex 

patterns by breaking a dataset, object, image, etc. into smaller and smaller pieces, 

typically "box"-shaped, and analyzing the pieces at each smaller scale. When box 

counting is done to determine a fractal dimension known as the box counting 

dimension, the information recorded is usually either yes or no as to whether or not 

the box contained the curve or not. In our cases, we will apply similar method 

counting the circles. We will count the number of cases ( )( )c xN r l  when the radius of 

( )c xr l  is met for a given xl . This expression allows us to quantify the density of peaks 

of the surface that is fundamental in tribology (contact mechanic, wear,…). However, 

the density of peaks depends also on the scale. Intuitively, for a fixed macroscopic 

area, the number of peaks will decrease when their radius will increase. It becomes 

then obvious to find the scaling law of this decrease. On the other hand, introducing 

the number ( )( )TlrN xc ,  of cases where a radius ( )Tlr xc ,  on the profile length is met 

through the above algorithm (of this is the same number of count that ( )Tll xy ,  i.e. 

( )( ) ( )( )TlINTlrN xyxc ,, = ). We have found the following results: 

( ) ( )( )








−=∆

→ x

xy

l
f l

TllN
TG

x log

,log
suplim,

0
 (24) 

and therefore ( ) ( )( )








−=∆

→ x

xc

l
f l

TlrN
TG

x log
,log

suplim,
0

 (25) 

The same reasoning as for Eq.22 and Eq.23 applied to Eq. (24) and Eq. (25), allows 

us to obtain the following power laws: 

( )( ) α −∆= '
c x xN r l l  (26) 

( )( ) α −∆= '
y x xN l l l  (27) 
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2.2.2 Properties 

1) The fractal dimension is unchanged if f is multiplied by a given factor.  

2) The fractal dimension is unchanged, through an γ  homothetic transform (i.e. 

γ′ = ( )z f t ) of the parameter t. 

3) If m and m' denote respectively the numbers of z and z' intercepts, with m'=km, 

then ( )( ) α −∆′ ′=,c xN r z x k l .  

4) If we do not impose the conditions − − −< < < <2 1...i q i i iz z z z  and 

+ + +> > > >1 2 ...i i i i pz z z z , the Nowicki's method is then a particular case of our 

method, by taking different values = 0.1y ml R . 

 

2.3 Analysis of discretisation error by simulation of Brownian profile 

A Brownian profile with fractal dimension 1.5 is generated by an algorithmic process 

(Figure 3) and discretized in 107 points. An advantage of this type of profile is to 

avoid the arithmetic error due to the floating point and inherent to fractal functions as 

Knopp or Weierstrass. 
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Figure 3: Brownian profile generated using 107 discretisation points (a) and different 
zooms at the origin: x10 (b), x100 (c), x1000 (d). 

 

The sampling rate is equal to 1 meaning that + − =1 1i ix x  and the profile is normalised 

to an amplitude equal to 1 on the whole interval length L. As it was proved, these 

operations do not affect the different values of the signal fractal dimension. When the 

algorithm is applied on curves with a number of intercepted lines m=100 (Figure 1), 
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one obtains a total of 94026 couples of values ( ) ( )( ), ,x y x c xl l l r l  where 

[ ]∈ ⋯1 8745294xl . As a result of the computation, the variation ranges for ( )y xl l  and 

( )c xr l  are respectively −  ⋯
93.83 10 0.99  and   ⋯

13467 1.110 . As xl  values integers 

on account of the discretization and according to Eq. 10, one gets a set of values 

( )c xr l  and ( )y xl l  for a given xl . However, if we plot the graph of the set 

( ) ( )( ), ,x y x c xl l l r l  and determine the fractal dimension, the slope of the regression line 

will then be calculated for a great part of the small xl  values. If we make the 

regression from the set of data, one can obtain ( )( ) ( )( ) −= = 1.4230902y x c x xN l l N r l l  

(Figure 4) with a good coefficient of correlation r = 0.98. 
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Figure 4: Evolution of the number of curvature radii ( )( )log xN r l  of the profile shown 

in Figure 3a, estimated at a xl  values versus the log xl  value. 
 

Consequently, we decide to calculate the value of the mean ( ) ( )( ), ,y x c xl l r l  for each 

xl . Figure 5a represents the variation of ( )log c xr l  versus log xl  and the 

corresponding linear equation is given by:  

( ) ± ±= +0.01 0.004log 2.756 1.488 logc x xr l l  (28) 

with regression coefficient r=0.998. The studied test proves that this slope is not 

statistically different from the theoretical fractal dimension equals to 1.5 for the 

Brownian motion. Four remarks could then be stated from the analysis of the residual 

regression: 
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i) ( )c xr l  is overestimated for small xl values and increases exponentially with xl : there 

are estimation errors on ( ).c xr l  

ii)  The xl  are approximately Gaussian distributed values with a high right tail. 

iii) The ( )c xr l  dispersion increases with xl . 

iv) The linear approximation is accurate for the values of xl  that are not too small. 

 

The appendix B presents other validations with function possessing different fractal 

dimensions.  
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Figure 5: Evolution of the curvature radius ( )log xr l  of the profile shown in Figure 3a, 

estimated at a xl  values versus the log xl  value (a). The thin line corresponds to the 

equation ( ) ± ±= +0.01 0.004log 2.756 1.488 logc x xr l l  and the dashed one to the corrected 

method with ( ) ( )± ± ±= + + −0.01 0.003 0.1log 2.732 1.494 log 1.14 / 1c x x xr l l n  (where xn  is the 

number of dx intervals used to calculate xl ). The graph (b) represents the evolution of 

the height curvature radii ( )log y xl l  versus the log xl  value. 
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3 Part 2 – Model application to physical processes 

3.1 Example 1 – Analysis of peaks radius flattening  during boundary 

lubricated friction 

 

3.1.1 Metal forming experimental device 
Experimental analysis of aluminium strip reduction by drawing process has been 

carried out using device developed by Bech et al. [23] at Technical University of 

Denmark. It consist of two working tools, i.e. glass and steel dies rigidly mounted in 

experimental setup assuring 20% reduction in thickness of aluminium strip. Steel die 

is inclined of β=3° and its position is adjusted so that deformatio n zo ne can be 

observed through die made of transparent hardened glass. Glass die is in form of 

circular disc with 50 mm diameter and 11 mm thick. The drawing speed Vs can be 

adjusted and in this study speed of 5 mm/s has been used. Schematic diagram of 

experimental device is presented on Figure 6. The material used for strip is semi-

hard aluminium AISI 1050 H24. The strips have been cut from a metal sheet of 2 mm 

into samples of the following dimensions: 450 x 20 x 2 mm. One side of the strip have 

been textured. Mesoscopic pockets were manufactured using Electro Discharge 

Machining (EDM) technique. Pockets in shape of about 10 x 2 mm grooves were 

manufactured, initial angle of side walls creating the pockets were about αo = 10°. 

Initial roughness inside the pockets were significantly higher than roughness on flat 

surface between the pockets (Figure 7). Viscosity of used mineral oil was 

0.5954 Pa·s. 
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Figure 6: Schematic diagram of experimental device used for drawing process [after 
24]. 

 

3.1.2 Surface roughness measurement and analysis 
 
Surface roughness were measured using Zygo NewView 7300 interferometric 

profiler. Vertical Scanning Interferometry (VSI) was used to measure the surfaces. 

The measurement principle is that unfiltered white light beam is split in two. Half of a 

beam is directed through a microscope objective and reflected from the surface and 

half is reflected from the reference mirror. When reflected beams combine together 

they produce interference fringes, where the best-contrast fringe occurs at best 

focus. In VSI mode the objective moves vertically to scan the surface at various 

heights. A 3D surface is reconstructed by analysis of fringes at every pixel. VSI mode 

uses algorithm to process fringe modulation data from the intensity signal to calculate 

surface heights. Obtained resolution will therefore depend on a precision of z axis 

positioning. In case of Zygo NewView 7300 instrument a piezoelectric stage with 

range of 160 µm is used to refine the height resolution going down to less than a 

1 nm. Spatial resolution will depend on camera size and used objective. In our case a 

several scans were made and stitched together to cover an area of 2 x 8 mm with 

spatial resolution (X, Y) resolution of 1.1 µm.  
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Figure 7: Initial textured surface with pockets prepared by electro erosion process 
and final morphology after drawing test, lubricated by mineral oil, different zones 

created on textured surface can be defined. 
 

On the surface measured after the lubricated drawing test has been performed, 

different zones on tribological contact can be defined. As shown on Figure 7 on both 

sides of deformed plateau two new zones can be found: zones 2 and 4. Initially those 

surfaces were inside the cavities pockets and due to elastoplastic deformation they 

form now part of a plateau. However, due to contact lubrication there was only partial 

contact between plateau and glass tool. In such contact, surface roughness will 

change leaving a specific signature of tribological process. Analysis of surface 

roughness can reveal that signature. However, direct analysis of 3D surface 

morphology is computationally more expensive and less robust than 2D analysis. 

Therefore to analyse surface roughness specific technique of transition from 3D 

surface to 2D surface profiles analysis has been developed. It consist of generation a 
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series of 2D profiles in vertical direction (Figure 8) from 3D surface. Once the profile 

are extracted different parameters can be calculated from individual profiles. 

Evolution of that parameters can be plotted in function of initial position of extracted 

profiles. Hence, every point on a graph corresponds to roughness parameter 

calculated from one vertical profile (Figure 8). 
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Figure 8: Analysis of roughness parameters (Ra and RLo) calculated on individual 2D 
profiles extracted from surface in vertical direction, every point on bottom graphs 

corresponds to roughness parameter calculated from one vertical profile from surface 
on top. 

 

Analysis of several different roughness parameters, revealed that only two 

parameters are able to clearly distinguish created zones on tested surface. The first 

one is developed length of the roughness profile RLo (Figure 8) and the second is our 

new parameter of profile curvature radius rc (Figure 9 and Figure 10). In this example 

the rc is calculated as an average value of rc and will be named cr  for randomly 

chosen lx lines. This approach will produce single parameter rc which will be scale 

independent. One characteristic value of rc start to dominate, therefore sufficient 

sampling number should be chosen to obtain more accurate estimation of dominant 

curvature radius for a given surface profile. Evaluating the value of cr  before and 

after tribological process create characteristic signature of surface. 

For comparison also an evolution of arithmetic mean value of roughness profile Ra 

has been plotted however zones 2 and 4 can not be distinguished using this simple 
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amplitude parameter. RLo is able to show zones 2 and 4 however contrary to rc the 

value at the plateau do not present any variation. In Figure 9 an initial value of rc 

parameter calculated on initial surface is analysed. Presented in Figure 10 evolution 

of parameter rc shows very well different zones and also variations of the parameter 

across the zone. High value of curvature radius of roughness profile at the left hand 

side of the plateau (zone 3) confirm more severe contact conditions in this area and 

flattening of the peaks. 
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Figure 9: Averaged curvature of peaks roughness cr  calculated on initial profile 
before drawing process, showing very regular sharp peaks in elecroeroded zone 

(small cr  around 6 µm) and higher peaks value on plateau ( cr  around 30 µm). 
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Figure 10: Analysis of average roughness peaks curvature radius ( cr ) calculated on 
individual 2D profiles extracted from surface in vertical direction, every point on 

bottom graphs corresponds to roughness parameter calculated from one vertical 
profile. 
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Variation of average roughness curvature before (Figure 9) and after (Figure 10) 

drawing process can be considered as characteristic signature of tribological contact.  

3.1.3 Multiscale decomposition 
In this section the multiscale decomposition of the radius curvature analysis is 

performed. One of the major interest in our method is to presents a multiscale 

evaluation of the radii curvature. As claimed in this paper, the curvature radius 

depends on the scale. It could then be obvious to represents the effect of drawing 

conditions as the multiscale variation of the radius curvature.  

According to eq. 22 and using a new notation involved by our study, radius curvature 

is equals to ( ) ( ) ( )( ) ( )∆
= 0

0,
p

c x c x xr l p r p l p l  where p represents the position on the 

measured surface along the drawing direction, 0
xl   the sampling length unit. In this 

case ( )0cr p  can be seen as an unscaled curvature radius i.e. independent of the 

length ( )plx . The Figure 11 presents the evolution of ( )0cr p  and Figure 12 shows 

evolution of ( )p∆ . Therefore, presented in Figure 13 multiscale variogram shows 

multiscale decomposition like those met in the wavelet decomposition allowing 

visualizing all multiscale features of the radius curvature. More detailed analysis of 

those aspects will be published in a follow-up paper where different drawing 

conditions will be analysed. 
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Figure 11: Evaluation' of the unscaled curvature radius ( )0cr p  versus the measured 

surface along the drawing direction p. 
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Figure 12: Evaluation of the fractal dimension ( )p∆  versus the measured surface 

along the drawing direction p. 
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Figure 13: Multiscale decomposition of ( ),c xr l p , a) decomposition graph, b) 

decomposition map. 
 

Different part of surface depending on local contact conditions will have different 

value of rc, fractal dimensions and unscaled radius curvatures. In case when the 

contact conditions are unknown, this parameter can be used to determine the regime 

of lubrication or zones of direct contact between contacting surfaces. Therefore, it 

can be a very robust tool for contact rheology by roughness analysis in tribological 

applications. 
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3.2 Example 2 – Analysis of stylus tip artifacts in troduced during surface 

measurement 

Surface data of a fractal nature may be gathered in a very wide variety of ways. All 

involve a certain amount of smoothing or degradation of the true surface data 

according to the recording method. In laser profilometry, devices provide a smoothing 

measuring the surface height via the interference patterns of the reflected height from 

a narrow beam. With mechanical profilers, the stylus tip curvature radius makes a 

smoothing effect on the surface and the information narrower than the stylus tip 

cannot be recorded. Since the smoothing effect is highly non-linear, it becomes very 

hard to estimate it on the original data. The basic idea we propose in this paper is to 

apply the theory of curvature radius to detect the scale on which the measurement 

system introduces a smoothing artefact on the data measurement. In fact, the 

smoothing effect will increase the curvature radius on the scale measurement. 

 

3.2.1 Analysis of an experimental measurement 

In a great number of roughness study using tactile profilometry, it was shown that the 

curvature radius rc calculated from the Nowicki's formulation was not a discriminate 

parameter for physical phenomena. We also have noticed that the values of rc will 

depend on the sampling length. As an application, a pure Aluminium sheet is 

polished with different paper grades: 80, 120, 220 and 500. Then 30 bi-dimensional 

profiles are recorded using a tactile profiler with a 10 µm stylus radius. 

Figure 14 shows the variation of ( )log c xr l  versus log xl  and Figure 15a shows an 

example of a grade 500 polished surface. As it could be shown on this last one, a 

cross over appears around ( ) = µ10c xr l m . Below this critical value, ( )c xr l  seems to 

be constant and over it, ( )c xr l  follows the power law given by Eq. 22. As it could be 

observed, the curvature radius is lower than for a smaller grain size. For different 

paper grades, the cross over related to ( )c xr l  is the same but the abscissa xl  

increases with the grain size. This fundamental relation shows that whatever the 

roughness amplitude of polished surfaces (Ra varying from 1.66 µm to 0.02 µm), the 

stylus size effect will give a same constant value of the curvature radius. The stylus 

size effect is greatly discussed in the bibliography [25, 26, 27, 28, 29], however no 

invariance parameter was found in the roughness measurement until now. 
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Figure 14: Evolution of the curvature radius ( )log xr l  versus log xl  for pure Aluminium 

sheet surface polished with different paper grades 80, 120, 220 and 500 (lx and r(lx) 
in µm). 
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Figure 15: (a) Profile of a pure Aluminium sheet surface polished with paper grade 
500 with a 10 µm stylus tip curvature. (b) Simulation of the scanning of the profile c 

with a 10 µm stylus tip curvature. (c) Simulation of profile a by stochastic circle 
function. 

 

3.2.2 Fractal simulation of experimental measuremen ts 

We have decided to write an algorithm that simulates the stylus effect that we would 

apply to the Weirstrass functions defined only by an amplitude factor A and the 

Hölder exponent H (Eq. 19). This algorithm simulates physically the scanning effect 

without using mathematical considerations on the profile and it is then well adapted 

for fractal curves. By an inverse method, the scaling factor and the fractal dimension 

are adjusted to experimental data to reproduce profiles that look like the polishing 

profiles after the stylus scanning effect was simulated with a curvature radius of 

10 µm. Figure 15b shows the simulated profile corresponding to the experimental 

one (Figure 15a) including the stylus integration simulation algorithm on the original 

simulated (Figure 15c). Table 1 presents the roughness parameters calculated on 

experimental profiles, as well as the simulated profiles and the stylus integration 
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simulation algorithm profiles (Ra: mean roughness amplitude, Rt: Range amplitude, 

Peaks: number of peaks by inch, D: fractal dimension calculated by the ANAM 

method [30, 31] ). 

 

Table 1: Comparison of roughness parameters calculated on measured and 

modelled profiles (Ra: mean roughness amplitude, Rt: total range amplitude, Peaks: 

number of peaks by inch, D: fractal dimension). 

Roughness parameters Measured r=10µm Modelled r=10µm Modelled r=0 µm 

Ra (µm) 0.63 0.64 0.66 

Rt (µm) 4.64 4.64 4.32 

Peaks/inch 820 814 1186 

D: Fractal dimension 1.08 1.09 1.23 

 

From this analysis the following remarks can be stated: 

i) Although our inverse method only use two parameters A and H, the experimental 

roughness parameters, the simulated ones and others are statistically equal. This 

point implies the following particular observations: 

a) Our original fractal model is adequate for some complex worn surfaces such the 

polished ones with only two parameters. The mechanism seems then to be described 

by an amplitude phenomenon, a “circle base”, stochastic components and finally the 

fractal dimension. 

b) The fractal dimension estimation calculated by the ANAM method seems to be 

very pertinent because when the estimated fractal dimension and the theoretical one 

are equal, the frequency roughness parameters are then equal. 

ii) The Fractal dimension of simulated surfaces with stylus integration gives less 

information than the original one; stylus integration leads to see the surface more 

Euclidean than the reality, as a consequence of the smoothing effect. The under-

estimation of surface fractal dimensions measured with a stylus is also confirmed by 

the decrease of the number of peaks characterizing a “less” fractal surface. 
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Figure 16: Evolution of the curvature radius ( )log xr l  versus log xl  for profile shown in 

Figure 15a, Figure 15b and Figure 15c (lx and r(lx) in µm). 
 

iii) For a stylus radius not too-large (less than 10 µm), the amplitude parameters are 

quite constant. The stylus effect does not fundamentally destroy them. We then plot 

in Figure 16. ( )log c xr l  versus log xl  for the three categories of profiles (means values 

of 30 profiles). The following remarks will then be stated: 

a) For > 30xl µm , all points are confounded in a linear log-log relation meaning that:  

1) There is no quantified stylus effect, 

2) Models and simulated surfaces are similar in a great range of scale, 

3) Hölderian and anti-Hölderian hypotheses on experimental profiles are respected. 

b) Both simulated stylus and experimental profiles present a step at the value 10 µm 

that is exactly the curvature radius: our method allows us to detect the stylus effect 

and furthermore, allows us to quantify the curvature radius of the profiler. As 

consequence, this method then allows us to give the critical threshold concerning xl  

and the value yl  under which the measurement effect could affect a metric value 

constructed on the signal. This aspect is a very important feature in the topographic 

measure area.  

c) For the measured surface, if < 2xl µm  the curvature radius increases linearly in 

the log-log plot with xl . By analysing more precisely experimental data, it could be 

observed that a white noise due to the numeric analogical conversion with low 

amplitude is present in the profile. As we have shown in what precedes, this fact 

explains this linear tendency. The method proposed in this paper then allows us to 

detect high frequencies components and also to quantify the amplitude range for 
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which the measure could be influenced. We will now verify for different stylus radii the 

relation between the discretization steps related to the curvature radii of the profile 

and the stylus radius. All 100 profiles on which stylus integration algorithms are 

applied are then simulated. Curvature radii are so estimated by our method and 

Figure 17 shows this variation. 
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Figure 17: Evolution of the curvature radius ( )log xr l  versus log xl  for profile shown in 

Figure 15c with different scanning simulation of the profiler stylus tip curvature 
varying in the range 0 to 100 µm (lx and r(lx) in µm). 

 

We then detect the step by taking only the radii values respecting the relationship 

( ) > +log 1 logc x xr l l  with <log 1.5xl . 

 On the other hand means values ( )c xr l , called ( )ρT
cr  are calculated for all values of 

xl  for each stylus radius ρ  and ( )ρT
cr  is so plotted versus ρ  (Figure 18). By linear 

regression analyses, one then obtains: 

( )ρ ρ± ±= +1 0.0180.5 1.014T
cr  

with a correlation coefficient = 0.9986.correlr  
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Figure 18: Plot of the asymptotic peak curvatures of Figure 17 versus the profiler 
stylus tip curvature. 

 

4 Conclusions 

A fractal approach of the curvature radius, on the basis of simulations, experimental 

measurements and analytical developments is presented in this paper. The proposed 

method generalizes the Nowicki's approach and then supplies a new tool overtaking 

the classic limits of the curvature radius analysis. It presents, in particular, an original 

advantage in the taking into account the highly non-linear stylus smoothing effect 

during the data gathering. New method is applied to tribological contact in metal 

forming process. Calculations of curvature radius along the tribological surface can 

be used to estimate the flattening effect of peaks curvature and therefore determine 

the areas of direct or boundary contact in measured tribological surfaces. This 

method can be of particular interest in lubricated contact to analyse lubrication 

regime and reveal the contact history. This technique showed to be robust in 

topographical contact analysis. Calculated average curvature of roughness peaks 

(rc') can be used to estimate topographical signature of tribological contact. 
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6 Appendix A.  The Definition of a peak 

We will now consider a peak as iiiqi zzzz <<<< −−− 12....  and 

piiii zzzz +++ >>>> ...21 , therefore x i p i ql x x+ −= −ɶ  and ( ) / 2y i i p i ql z z z+ −= − +ɶ . It is then 

possible to compute a cr  value. With this formulation, peak will be seen as a non 

fractal structure. We will name this peak as Euclidian peak crɶ . According to the Eq.23 

by letting ∆ = 1 (non fractal structure), one would have ( )y x xl l l= β  and thus for any 

fractal dimension of the initial curve. This mean that giving an ideal definition of the 

radii curvature will pass over the fractal dimension of the curve and peaks become 

homothetic. We will now verify this assumption by simulate 1000 Brownian curves 

with a sampling length equal to unity and discretized in 4000 points. Amplitude of 

each curves are normalize to unity. Then we calculate the values of xl
ɶ , yl
ɶ  and crɶ . 

We find the following relation 0.041.01
330y xl l ±

±=ɶ ɶ  with R=0.999 proving that this structure 

is Euclidean. In the Figure A1, we have plotted the evolution of the mean value of 

curvature radii calculated from the fractal ( cr ), and non fractal approach ( crɶ ) versus 

the values of xl  and ɶxl . Then regressions are proceeded on the two samples. The 

distribution of the number of peaks measured with the Euclidean method is plot on 

the Figure A1. One find the mean of ɶxl  equals to 4 and the number of xl
ɶ  decrease 

exponentially. On the fractal curve, the probability to have 99.5 % of detected radii crɶ  

by this classical algorithm are under 10 sampling length. The gravity centre of yl
ɶ  and 

crɶ  is marked by the star on the graph. This point is on the curves of the fractal radii 

described by Eq. 22. What is then the physical meaning of that point? In fact, this 

Euclidian algorithm is only a particular case of our method. It fixe a critical length and 

measure all the homothetic peaks. This approach validates our original method of 

determination of radii curvature. 
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Figure A1: Evolution of the fractal radii curvature ( )xlrlog  and Euclidian radii 

curvature ( )log xr lɶ  versus xllog for a Brownian motion. 

7 Appendix B.  Validation of the method on simulate d fractal curves  

To test the efficiency of our algorithm, we have chosen to calculate the curvature 

radius for curves with different fractal dimensions: a perfect white noise ( ∆ = 2 ) and a 

Weierstrass Function with different fractal dimension.  

 

7.1 The white noise 

It seems not obvious to calculate a curvature radius for a white noise. In fact, we can 

find that R does not exist. We start from analysis of R properties: is R infinite? If that 

is the case, could the surface be considered as a plane? Is in this case the radius 

curvature crɶ  still defined? How can we henceforth apply our reasoning to these two 

questions? In fact, that depends on the scale of observation. Indeed, according to 

Eq. 23, the condition allowing the definition of the curvature radius implies ≥ βxl  

where β  is a critical length where the peak is defined. Therefore, if < βxl  neither ( )c xr l  

nor the relation ∆∝( )c x xr l l  are defined according to our formulation. On another hand, 

we obtain in this case ∝( )c x yr l l that seems coherent for a white noise. For that reason 

the curve appears as being more flat for a large scale of observations if its fractal 

dimension is high. It is particularly interesting to analyse the calculus of crɶ  or cr  for a 

noise due to the following reasons: first, this noisy surface is a limit case in our study 

and the performance of our algorithm has to be tested, secondly, the recording 

devices could introduce white or pink noises that could influence the detection of the 
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curvature radius, and thirdly, we could analyse the probability to detect a peak that 

does not exist. We then apply our algorithm and plot the result in Figure B1. The 

following equation provides a good estimation of the fractal dimension 

∆ =( 2.005)with coefficient of regression r=0.99995. 

( ) ( )± ± ±= − + + −0.006 0.002 0.01log 0.914 2.005 log 1.75 / 1c x x xr l l n   (b1)  

Where xn  is the number of dx intervals used to calculate xl . Without applying the 
discretization errors that are particularly important in the case of a white noise, one 
would have obtained the following equation: 
 

( ) = − +log 0.4952 1.81logc x xr l l   (b2) 

with ∆ = 1.81 and with a 20 % error on the fractal dimension. Our modelling of the 

discretization error is then relatively efficient. 
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Figure B1: Evolution of the fractal curvature radius ( )log xr l  and Euclidean curvature 

radius ( )log xr lɶ  versus log xl for a white noise. 

 

7.2 The fractional Brownian motion 

The properties of a stochastic fractional Brownian motion (FBM) [24-25] allow us to 

determine the algorithm effect on the determination of cr  and rɶ  for different fractal 

dimensions. The functions are determined by plotting different curves with different 

fractal dimensions (1 to 2 with 0.1 as discretization step). These curves are so 

discretized through 100000 points. Since the FBM realize stochastic curves, 100 

curves are then simulated for each fractal dimension. Figure B2 shows the variation 
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of ( )ɶlog c xr l  (Euclidian peaks, see appendix A for mathematical definition) and 

( )log c xr l  versus log xl  using the corrected method for 1, 1.2, 1.4, 1.6, 1.8 and 2 as 

theoretical fractal dimensions: first, Eq. b1 fit very well the experimental data for any 

fractal dimension. The greater the fractal dimension is, the more pertinent is the 

corrected method. One obtains for the correction coefficient α2 , ∆=α =1
2 1.09  

∆=α =1.2
2 1.24 , ∆=α =1.4

2 1.27 , and the following fractal dimensions ∆=∆ =1 1.00 , 

∆=∆ =1.2 1.21, , ∆=∆ =1.4 1.40 , ∆=∆ =1.6 1.58 , ∆=∆ =1.8 1.75  and ∆=∆ =2 1.92 . The fractal 

dimension estimated from the radius curvature of the surface is well found whatever 

the theoretical fractal dimension is. Those results are coherent, as far as, the number 

of peaks in the xl range decreases with the increase of the fractal dimension. For the 

Euclidean curve ( ∆ = 1, this curve is entirely differentiable), the regression lines of 

( )ɶlog c xr l  and ( )log c xr l  versus log xl  are confounded. This means that both methods 

give the same estimation of the curvature radius for Euclidean curves. Since the 

fractal dimension increases, one obtains ( ) ( )<ɶlog logc x c xr l r l  and the curvature 

radius is underestimated in the case of fractal curves, if we consider a peak as 

defined in Euclidian case (Appendix A). The difference increases with the fractal 

dimension confirming the hypothesis according to which, on the fractal curves, the 

peaks cannot be defined with the intuitive definition of the Euclidean curves. 
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Figure B2: Evolution of the fractal curvature radius ( )log xr l  and Euclidean curvature 

radius ( )ɶlog xr l  versus log xl  for different fractional Brownian curves (fractal 

dimension 1, 1.2, 1.4, 1.6, 1.8, 2) with their associated profiles. 
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