54 research outputs found

    Intragenomic variation in the second internal transcribed spacer of the ribosomal DNA of species of the genera Culex and Lutzia (Diptera: Culicidae)

    Full text link
    Culex is the largest genus of Culicini and includes vectors of several arboviruses and filarial worms. Many species of Culex are morphologically similar, which makes their identification difficult, particularly when using female specimens. To aid evolutionary studies and species distinction, molecular techniques are often used. Sequences of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA) from 16 species of the genus Culex and one of Lutzia were used to assess their genomic variability and to verify their applicability in the phylogenetic analysis of the group. The distance matrix (uncorrected p-distance) that was obtained revealed intragenomic and intraspecific variation. Because of the intragenomic variability, we selected ITS2 copies for use in distance analyses based on their secondary structures. Neighbour-joining topology was obtained with an uncorrected p-distance. Despite the heterogeneity observed, individuals of the same species were grouped together and correlated with the current, morphology-based classification, thereby showing that ITS2 is an appropriate marker to be used in the taxonomy of Culex

    Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic?

    Full text link
    The overview presented here has the goal of examining whether carbon disulfide (CS2) may play a role as an endogenously generated bioregulator and/or has therapeutic value. The neuro- and reproductive system toxicity of CS2 has been documented from its long-term use in the viscose rayon industry. CS2 is also used in the production of dithiocarbamates (DTCs), which are potent fungicides and pesticides, thus raising concern that CS2 may be an environmental toxin. However, DTCs also have recognized medicinal use in the treatment of heavy metal poisonings as well as having potency for reducing inflammation. Three known small molecule bioregulators (SMBs) nitric oxide, carbon monoxide, and hydrogen sulfide were initially viewed as environmental toxins. Yet each is now recognized as having intricate, though not fully elucidated, biological functions at concentration regimes far lower than the toxic doses. The literature also implies that the mammalian chemical biology of CS2 has broader implications from inflammatory states to the gut microbiome. On these bases, we suggest that the very nature of CS2 poisoning may be related to interrupting or overwhelming relevant regulatory or signaling process(es), much like other SMBs

    Molecular dynamics simulation of the aqueous solvation shell of cellulose and xanthate ester derivatives

    No full text
    Gonzalo Riadi, Fernando González-Nilo. Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Casilla 721, Talca, Chile.MD simulations of a pentasaccharide having D-glucopyranoside residues connected by (14)- glycosidic linkages, as a model of cellulose solvated in water, were carried out comparing the solvation of the hydroxyl group at C2 of the central ring of the pentamer and that of a single glucopyranose ring. MD simulations of 10 nsec were carried under NPT and periodic boundary conditions at 298 K and 1 atm. Explicit solvent (TIP3) and the force field CHARMM27 (modified for xanthate ester derivatives) were used in the molecular dynamics simulations. RDF calculations with respect to O2 of the central ring of the pentamer showed a well structured first solvation shell followed by secondary shells. When comparing the simulations of the pentamer to a single glucopyranose ring, it was observed that the solvation of O2 was lower for one repetitive unit, indicating that the pentamer had a stronger H-bond structure of water around O2 due to the cooperative effect of the neighboring residues. When the O2 of the central ring of the pentamer was substituted by a p-nitrobenzylxanthate moiety (pentXNB) there was a strong decrease in the hydration of the substituted O2 but the carbon and the sulfur of the thiocarbonyl group were clearly hydrated compared to the sulfur bridge. The global minimum energy conformation showed the p-nitrobenzyl group folded over the neighboring glucose ring. However, the simulations showed that the XNB group oscillates over the pentamer in periods of ca. 3000 psec

    Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions

    No full text
    Artículo de publicación ISICardiac fibroblasts (CF) not only modulate extracellular matrix (ECM) proteins homeostasis, but also respond to chemical and mechanical signals. CF express a variety of receptors through which they modulate the proliferation/cell death, autophagy, adhesion, migration, turnover of ECM, expression of cytokines, chemokines, growth factors and differentiation into cardiac myofibroblasts (CMF). Differentiation of CF to CMF involves changes in the expression levels of various receptors, as well as, changes in cell phenotype and their associated functions. CF and CMF express the beta 2-adrenergic receptor, and its stimulation activates PKA and EPAC proteins, which differentially modulate the CF and CMF functions mentioned above. CF and CMF also express different levels of Angiotensin 11 receptors, in particular, AT1R activation increases collagen synthesis and cell proliferation, but its overexpression activates apoptosis. CF and CMF express different levels of B1 and B2 kinin receptors, whose stimulation by their respective agonists activates common signaling transduction pathways that decrease the synthesis and secretion of collagen through nitric oxide and prostacyclin I2 secretion. Besides these classical functions, CF can also participate in the inflammatory response of cardiac repair, through the expression of receptors commonly associated to immune cells such as Toll like receptor 4, NLRP3 and interferon receptor. The activation by their respective agonists modulates the cellular functions already described and the release of cytokines and chemokines. Thus, CF and CMF act as sentinel cells responding to a plethora of stimulus, modifying their own behavior, and that of neighboring cells. (c) 2015 Elsevier Ltd. All rights reserved

    USO DE LA TOMOGRAFIA DE EMISION DE POSITRONES EN EL CANCER COLORRECTAL

    No full text

    PET, TOMOGRAFIA POR EMISION DE POSITRONES: PRESENTACION DE UN CASO CLINICO

    No full text
    Se presenta un caso clínico de una paciente estudiada por nódulo pulmonar solitario con Tomografía por Emisión de Positrones utilizando Flúor18-deoxiglucosa. Con el estudio metabólico quedó en evidencia la malignidad del nódulo y la aparición de dos nuevos focos sugerentes de diseminación, no demostrados por otras técnicas diagnósticasA patient with a solitary pulmonary nodule is presented. She was studied with PET using F-18 FDG. The metabolic images demonstrated increased uptake in the nodule and 2 additional areas suggestive of extension, not seen in anatomic diagnostic procedures. These findings were compatible with a malignant tumour with metastasi
    corecore