714 research outputs found
Use of Artificial Intelligence as an Innovative Method for Liver Graft Macrosteatosis Assessment
The worldwide implementation of a liver graft pool using marginal livers (ie, grafts with a high risk of technical complications and impaired function or with a risk of transmitting infection or malignancy to the recipient) has led to a growing interest in developing methods for accurate evaluation of graft quality. Liver steatosis is associated with a higher risk of primary nonfunction, early graft dysfunction, and poor graft survival rate. The present study aimed to analyze the value of artificial intelligence (AI) in the assessment of liver steatosis during procurement compared with liver biopsy evaluation. A total of 117 consecutive liver grafts from brain-dead donors were included and classified into 2 cohorts: ≥30 versus <30% hepatic steatosis. AI analysis required the presence of an intraoperative smartphone liver picture as well as a graft biopsy and donor data. First, a new algorithm arising from current visual recognition methods was developed, trained, and validated to obtain automatic liver graft segmentation from smartphone images. Second, a fully automated texture analysis and classification of the liver graft was performed by machine-learning algorithms. Automatic liver graft segmentation from smartphone images achieved an accuracy (Acc) of 98%, whereas the analysis of the liver graft features (cropped picture and donor data) showed an Acc of 89% in graft classification (≥30 versus <30%). This study demonstrates that AI has the potential to assess steatosis in a handy and noninvasive way to reliably identify potential nontransplantable liver grafts and to avoid improper graft utilization
First detection of a VHE gamma-ray spectral maximum from a Cosmic source: H.E.S.S. discovery of the Vela X nebula
The Vela supernova remnant (SNR) is a complex region containing a number of
sources of non-thermal radiation. The inner section of this SNR, within 2
degrees of the pulsar PSR B0833-45, has been observed by the H.E.S.S. gamma-ray
atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from
an extended region to the south of the pulsar, within an integration region of
radius 0.8 deg. around the position (RA = 08h 35m 00s, dec = -45 deg. 36'
J2000.0). The excess coincides with a region of hard X-ray emission seen by the
ROSAT and ASCA satellites. The observed energy spectrum of the source between
550 GeV and 65 TeV is well fit by a power law function with photon index = 1.45
+/- 0.09(stat) +/- 0.2(sys) and an exponential cutoff at an energy of 13.8 +/-
2.3(stat) +/- 4.1(sys) TeV. The integral flux above 1 TeV is (1.28 +/- 0.17
(stat) +/- 0.38(sys)) x 10^{-11} cm^{-2} s^{-1}. This result is the first clear
measurement of a peak in the spectral energy distribution from a VHE gamma-ray
source, likely related to inverse Compton emission. A fit of an Inverse Compton
model to the H.E.S.S. spectral energy distribution gives a total energy in
non-thermal electrons of ~2 x 10^{45} erg between 5 TeV and 100 TeV, assuming a
distance of 290 parsec to the pulsar. The best fit electron power law index is
2.0, with a spectral break at 67 TeV.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and
Astrophysics letter
A possible association of the new VHE gamma-ray source HESS J1825--137 with the pulsar wind nebula G18.0--0.7
We report on a possible association of the recently discovered very
high-energy -ray source HESS J1825--137 with the pulsar wind nebula
(commonly referred to as G 18.0--0.7) of the year old
Vela-like pulsar PSR B1823--13. HESS J1825--137 was detected with a
significance of 8.1 in the Galactic Plane survey conducted with the
H.E.S.S. instrument in 2004. The centroid position of HESS J1825--137 is offset
by 11\arcmin south of the pulsar position. \emph{XMM-Newton} observations have
revealed X-ray synchrotron emission of an asymmetric pulsar wind nebula
extending to the south of the pulsar. We argue that the observed morphology and
TeV spectral index suggest that HESS J1825--137 and G 18.0--0.7 may be
associated: the lifetime of TeV emitting electrons is expected to be longer
compared to the {\it XMM-Newton} X-ray emitting electrons, resulting in
electrons from earlier epochs (when the spin-down power was larger)
contributing to the present TeV flux. These electrons are expected to be
synchrotron cooled, which explains the observed photon index of , and
the longer lifetime of TeV emitting electrons naturally explains why the TeV
nebula is larger than the X-ray size. Finally, supernova remnant expansion into
an inhomogeneous medium is expected to create reverse shocks interacting at
different times with the pulsar wind nebula, resulting in the offset X-ray and
TeV -ray morphology.Comment: 5 pages, 3 figures, to appear in Astronomy and Astrophysics Letter
Discovery of the Binary Pulsar PSR B1259-63 in Very-High-Energy Gamma Rays around Periastron with H.E.S.S
We report the discovery of very-high-energy (VHE) gamma-ray emission of the
binary system PSR B1259-63/SS 2883 of a radio pulsar orbiting a massive,
luminous Be star in a highly eccentric orbit. The observations around the 2004
periastron passage of the pulsar were performed with the four 13 m Cherenkov
telescopes of the H.E.S.S. experiment, recently installed in Namibia and in
full operation since December 2003. Between February and June 2004, a gamma-ray
signal from the binary system was detected with a total significance above 13
sigma. The flux was found to vary significantly on timescales of days which
makes PSR B1259-63 the first variable galactic source of VHE gamma-rays
observed so far. Strong emission signals were observed in pre- and
post-periastron phases with a flux minimum around periastron, followed by a
gradual flux decrease in the months after. The measured time-averaged energy
spectrum above a mean threshold energy of 380 GeV can be fitted by a simple
power law F_0(E/1 TeV)^-Gamma with a photon index Gamma =
2.7+-0.2_stat+-0.2_sys and flux normalisation F_0 = (1.3+-0.1_stat+-0.3_sys)
10^-12 TeV^-1 cm^-2 s^-1. This detection of VHE gamma-rays provides unambiguous
evidence for particle acceleration to multi-TeV energies in the binary system.
In combination with coeval observations of the X-ray synchrotron emission by
the RXTE and INTEGRAL instruments, and assuming the VHE gamma-ray emission to
be produced by the inverse Compton mechanism, the magnetic field strength can
be directly estimated to be of the order of 1 G.Comment: 10 pages, 8 figures, accepted in Astronomy and Astrophysics on 2 June
2005, replace: document unchanged, replaced author field in astro-ph entry -
authors are all members of the H.E.S.S. collaboration and three additional
authors (99+3, see document
Fermi-LAT Constraints on the Pulsar Wind Nebula Nature of HESS J1857+026
Since its launch, the Fermi satellite has firmly identified 5 pulsar wind nebulae plus a large number of candidates, all powered by young and energetic pulsars. HESS J1857+026 is a spatially extended gamma-ray source detected by H.E.S.S. and classified as a possible pulsar wind nebula candidate powered by PSR J1856+0245. Aims. We search for -ray pulsations from PSR J1856+0245 and explore the characteristics of its associated pulsar wind nebula. Methods. Using a rotational ephemeris obtained from the Lovell telescope at Jodrell Bank Observatory at 1.5 GHz, we phase.fold 36 months of gamma-ray data acquired by the Large Area Telescope (LAT) aboard Fermi. We also perform a complete gamma-ray spectral and morphological analysis. Results. No pulsation was detected from PSR J1856+0245. However, significant emission is detected at a position coincident with the TeV source HESS J1857+026. The gamma-ray spectrum is well described by a simple power law with a spectral index of Gamma = 1.53 +/- 0.11(sub stat) +/- 0.55(sub syst) and an energy flux of G(0.1 C100 GeV) = (2.71 +/- 0.52(sub stat) +/- 1.51(sub syst) X 10(exp -11) ergs/ sq cm/s. This implies a gamma.ray efficiency of approx 5 %, assuming a distance of 9 kpc, the gamma-ray luminosity of L(sub gamma) (sub PWN) (0.1 C100 GeV) = (2.5 +/- 0.5(sub stat) +/- 1.5(sub syst)) X 10(exp 35)(d/(9kpc))(exp 2) ergs/s and E-dot = 4.6 X 10(exp 36) erg /s, in the range expected for pulsar wind nebulae. Detailed multi-wavelength modeling provides new constraints on its pulsar wind nebula nature
3.9 day orbital modulation in the TeV gamma-ray flux and spectrum from the X-ray binary LS 5039
New observations of LS 5039, a High Mass X-ray Binary comprising a massive
star and compact object, were carried out with the High Energy Stereoscopic
System of Cherenkov Telescopes (H.E.S.S.) in 2005 at very high energy (VHE)
gamma-ray energies. These observations reveal that its flux and energy spectrum
are modulated with the 3.9 day orbital period of the binary system. This is the
first time in gamma-ray astronomy that orbital modulation has been observed,
and periodicity clearly established using ground-based gamma-ray detectors. The
VHE gamma-ray emission is largely confined to half of the orbit, peaking around
the inferior conjunction epoch of the compact object. For this epoch, there is
also a hardening of the energy spectrum in the energy range between 0.2 TeV and
a few TeV. The flux vs. orbital phase profile provides the first clear
indication of gamma-ray absorption via pair production within an astrophysical
source, a process which is expected to occur if the gamma-ray production site
is situated within ~1 AU of the compact object. Moreover the production region
size must be not significantly greater than the binary separation (~0.15 AU).
Notably, these constraints are also considerably smaller than the collimated
outflows or jets (extending out to ~1000 AU) observed in LS 5039. The spectral
hardening could arise from variations with phase in the maximum electron
energies, and/or the dominant VHE gamma-ray production mechanism.Comment: 8 pages, 8 figures, accepted for publication in Astronomy &
Astrophysic
Fermi-LAT observations of the exceptional gamma-ray outbursts of 3C 273 in September 2009
We present the light curves and spectral data of two exceptionally luminous
gamma-ray outburts observed by the Large Area Telescope (LAT) experiment on
board Fermi Gamma-ray Space Telescope from 3C 273 in September 2009. During
these flares, having a duration of a few days, the source reached its highest
gamma-ray flux ever measured. This allowed us to study in some details their
spectral and temporal structures. The rise and decay are asymmetric on
timescales of 6 hours, and the spectral index was significantly harder during
the flares than during the preceding 11 months. We also found that short, very
intense flares put out the same time-integrated energy as long, less intense
flares like that observed in August 2009.Comment: Corresponding authors: E. Massaro, [email protected]; G.
Tosti, [email protected]. 15 pages, 4 figures, published in The
Astrophysical Journal Letters, Volume 714, Issue 1, pp. L73-L78 (2010
Fermi-LAT Study of Gamma-ray Emission in the Direction of Supernova Remnant W49B
We present an analysis of the gamma-ray data obtained with the Large Area
Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the direction of
SNR W49B (G43.3-0.2). A bright unresolved gamma-ray source detected at a
significance of 38 sigma is found to coincide with SNR W49B. The energy
spectrum in the 0.2-200 GeV range gradually steepens toward high energies. The
luminosity is estimated to be 1.5x10^{36} (D/8 kpc)^2 erg s^-1 in this energy
range. There is no indication that the gamma-ray emission comes from a pulsar.
Assuming that the SNR shell is the site of gamma-ray production, the observed
spectrum can be explained either by the decay of neutral pi mesons produced
through the proton-proton collisions or by electron bremsstrahlung. The
calculated energy density of relativistic particles responsible for the LAT
flux is estimated to be remarkably large, U_{e,p}>10^4 eV cm^-3, for either
gamma-ray production mechanism.Comment: 9 pages, 10 figure
Detailed spectral and morphological analysis of the shell type SNR RCW 86
Aims: We aim for an understanding of the morphological and spectral
properties of the supernova remnant RCW~86 and for insights into the production
mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods:
We analyzed High Energy Spectroscopic System data that had increased
sensitivity compared to the observations presented in the RCW~86 H.E.S.S.
discovery publication. Studies of the morphological correlation between the
0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions
have been performed as well as broadband modeling of the spectral energy
distribution with two different emission models. Results:We present the first
conclusive evidence that the TeV gamma-ray emission region is shell-like based
on our morphological studies. The comparison with 2-5~keV X-ray data reveals a
correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is
best described by a power law with an exponential cutoff at TeV and a spectral index of ~. A static
leptonic one-zone model adequately describes the measured spectral energy
distribution of RCW~86, with the resultant total kinetic energy of the
electrons above 1 GeV being equivalent to 0.1\% of the initial kinetic
energy of a Type I a supernova explosion. When using a hadronic model, a
magnetic field of ~100G is needed to represent the measured data.
Although this is comparable to formerly published estimates, a standard
E spectrum for the proton distribution cannot describe the gamma-ray
data. Instead, a spectral index of ~1.7 would be required, which
implies that ~erg has been transferred into
high-energy protons with the effective density cm^-3. This
is about 10\% of the kinetic energy of a typical Type Ia supernova under the
assumption of a density of 1~cm^-3.Comment: accepted for publication by A&
- …