36 research outputs found

    Sialoadhesin Expressed on IFN-Induced Monocytes Binds HIV-1 and Enhances Infectivity

    Get PDF
    Background: HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14 + monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1), a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases. Methodology/Principal Findings: We analyzed sialoadhesin expression on CD14 + monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14 + monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-a and interferon-c but not tumor necrosis factor-a. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte selfinfection. Conclusions/Significance: Increased sialoadhesin expression on CD14 + monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14 + monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesinexpressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing th

    Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium

    Get PDF
    BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia

    Subsurface interactions of actinide species and microorganisms: Implications for the bioremediation of actinide-organic mixtures

    Full text link

    Precisely Tunable Engineering of Sub-30 nm Monodisperse Oligonucleotide Nanoparticles

    No full text
    Advancement of RNAi therapies is mainly hindered by the development of efficient delivery vehicles. The ability to create small size (<30 nm) oligonucleotide nanoparticles is essential for many aspects of the delivery process but is often overlooked. In this report, we describe diblock star polymers that can reproducibly complex double-stranded oligonucleotides into monodisperse nanoparticles with 15, 23, or 30 nm in diameter. The polymer–nucleic acid nanoparticles have a core–shell architecture with dense PEG brush coating. We characterized these nanoparticles using ITC, DLS, FRET, FCS, TIRF, and TEM. In addition to small size, these nanoparticles have neutral zeta-potentials, making the presented polymer architecture a very attractive platform for investigation of yet poorly studied polyplex size range for siRNA and antisense oligonucleotide delivery applications

    Remarkable Photophysics and Amplified Quenching of Conjugated Polyelectrolyte Oligomers

    No full text
    We report the photophysics and fluorescence quenching of a series of monodisperse, anionic π-conjugated oligomers that are molecularly dissolved in aqueous solution. These structurally well-defined oligomers feature oligo(phenylene ethynylene) backbones with two -CH2COO(-) units on each repeat unit, with overall lengths of 5, 7, and 9 repeats. The ionic oligomers display a structured fluorescence band with high quantum efficiency in water, in contrast to the low fluorescence quantum efficiency and pronounced aggregation displayed by structurally similar oligomeric and polymeric (phenylene ethynylene) conjugated polyelectrolytes studied previously. Stern-Volmer (SV) fluorescence quenching studies using cationic charge- and energy-transfer quenchers reveal that all of the oligomers give rise to SV quenching constants (KSV) in excess of 10(6) M(-1), with values increasing with oligomer length, consistent with the amplified quenching effect. The amplified quenching effect is proposed to occur due to the formation of comparatively small oligomer aggregates
    corecore