Abstract

Background: HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14 + monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1), a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases. Methodology/Principal Findings: We analyzed sialoadhesin expression on CD14 + monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14 + monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-a and interferon-c but not tumor necrosis factor-a. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte selfinfection. Conclusions/Significance: Increased sialoadhesin expression on CD14 + monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14 + monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesinexpressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing th

    Similar works