2,152 research outputs found

    Assessing Mondragon: Stability & Managed Change in the Face of Globalization

    Get PDF
    By drawing on new interview evidence gathered during several field trips and new financial and economic data from both external and internal sources, we document and assess the changing economic importance and performance of the Mondragon group of cooperatives as well as the two largest sectors within the group. Compared to conventional firms in the Basque Country and Spain, and producer co-ops (PCs) and employee owned firms elsewhere, in general we find evidence of growing group importance and strong performance and a similarly strong record for the industrial and retail divisions...employee ownership, producer cooperatives, labor managed firm, productive efficiency, Mondragon

    Assessing Mondragon: Stability & Managed Change in the Face of Globalization

    Full text link
    By drawing on new interview evidence gathered during several field trips and new financial and economic data from both external and internal sources, we document and assess the changing economic importance and performance of the Mondragon group of cooperatives as well as the two largest sectors within the group. Compared to conventional firms in the Basque Country and Spain, and producer co-ops (PCs) and employee owned firms elsewhere, in general we find evidence of growing group importance and strong performance and a similarly strong record for the industrial and retail divisions...http://deepblue.lib.umich.edu/bitstream/2027.42/133017/1/wp1003.pd

    Evolution of the Gas Mass Fraction of Progenitors to Today's Massive Galaxies: ALMA Observations in the CANDELS GOODS-S Field

    Full text link
    We present an ALMA survey of dust continuum emission in a sample of 70 galaxies in the redshift range z=2-5 selected from the CANDELS GOODS-S field. Multi-Epoch Abundance Matching (MEAM) is used to define potential progenitors of a z = 0 galaxy of stellar mass 1.5 10^11 M_sun. Gas masses are derived from the 850um luminosity. Ancillary data from the CANDELS GOODS-S survey are used to derive the gas mass fractions. The results at z<=3 are mostly in accord with expectations: The detection rates are 75% for the z=2 redshift bin, 50% for the z=3 bin and 0% for z>=4. The average gas mass fraction for the detected z=2 galaxies is f_gas = 0.55+/-0.12 and f_gas = 0.62+/-0.15 for the z=3 sample. This agrees with expectations for galaxies on the star-forming main sequence, and shows that gas fractions have decreased at a roughly constant rate from z=3 to z=0. Stacked images of the galaxies not detected with ALMA give upper limits to f_gas of <0.08 and <0.15, for the z=2 and z=3 redshift bins. None of our galaxies in the z=4 and z=5 sample are detected and the upper limit from stacked images, corrected for low metallicity, is f_gas<0.66. We do not think that lower gas-phase metallicities can entirely explain the lower dust luminosities. We briefly consider the possibility of accretion of very low-metallicity gas to explain the absence of detectable dust emission in our galaxies at z>4.Comment: Accepted for publication in the Astrophysical Journal. 33 pages; 11 figure

    Get it from the Source: Identifying Library Resources and Software Used in Faculty Research

    Get PDF
    Libraries and Information Technology departments aim to support the educational and research needs of students, researchers, and faculty members. Close matches between the resources those departments provide and the resources the institution’s community members actually use highlight the value of the departments, demonstrate fiscally responsibility, and show attentiveness to the community’s needs. Traditionally, libraries rely on usage statistics to guide collection development decisions, but usage statistics can only imply value. Identifying a resource by name in a publication demonstrates the value of that resource more clearly. This pilot project examined the full-text of articles published in 2016-2017 by faculty members at a mid-sized, special-focus institution to answer the questions “Do faculty members have university-provided access to the research tools they need to publish?” and “If not, where are they getting them?” Using a custom database, the presenters indexed every publication by author, publication, resources used, availability of the identified resources, and more. This pilot study can be adapted to projects at other institutions, allowing them to gain a better understanding of the strengths and weaknesses of their own institution’s offerings. In addition, they will be able to identify ways to use that data to negotiate for additional resources, inform strategic partnerships, and facilitate open discussions with the institution’s community

    Molecular gas in Low Luminosity Radio Galaxies in (proto-)clusters at z~0.4-2.6

    Get PDF
    We investigate the role of the environment in processing molecular gas in radio galaxies (RGs). We observed five RGs at z=0.4-2.6 in dense Mpc-scale environment with the IRAM-30m telescope. We set four upper-limits and report a tentative CO(7-6) detection at signal-to-noise ratio SNR>~2 for COSMOS-FRI~70, at z=2.63. If the detection will be confirmed at higher SNR, COSMOS-FRI~70 will become the most distant brightest cluster galaxy (BCG) candidate detected in CO. We speculate that the cluster environment might have played a role in preventing the refueling via environmental mechanisms such as galaxy harassment, strangulation, ram-pressure, or tidal stripping. The RGs of this work are excellent targets for ALMA as well as next generation telescopes such as the James Webb Space Telescope

    Towards a resolved Kennicutt-Schmidt law at high redshift

    Get PDF
    Massive galaxies in the distant Universe form stars at much higher rates than today. Although direct resolution of the star forming regions of these galaxies is still a challenge, recent molecular gas observations at the IRAM Plateau de Bure interferometer enable us to study the star formation efficiency on subgalactic scales around redshift z = 1.2. We present a method for obtaining the gas and star formation rate (SFR) surface densities of ensembles of clumps composing galaxies at this redshift, even though the corresponding scales are not resolved. This method is based on identifying these structures in position-velocity diagrams corresponding to slices within the galaxies. We use unique IRAM observations of the CO(3-2) rotational line and DEEP2 spectra of four massive star forming distant galaxies - EGS13003805, EGS13004291, EGS12007881, and EGS13019128 in the AEGIS terminology - to determine the gas and SFR surface densities of the identifiable ensembles of clumps that constitute them. The integrated CO line luminosity is assumed to be directly proportional to the total gas mass, and the SFR is deduced from the [OII] line. We identify the ensembles of clumps with the angular resolution available in both CO and [OII] spectroscopy; i.e., 1-1.5". SFR and gas surface densities are averaged in areas of this size, which is also the thickness of the DEEP2 slits and of the extracted IRAM slices, and we derive a spatially resolved Kennicutt-Schmidt (KS) relation on a scale of ~8 kpc. The data generally indicates an average depletion time of 1.9 Gyr, but with significant variations from point to point within the galaxies.Comment: 6 pages, 4 figures, 2 tables, accepted by Astronomy and Astrophysic

    Disk galaxies are self-similar: the universality of the HI-to-Halo mass ratio for isolated disks

    Full text link
    Observed scaling relations in galaxies between baryons and dark matter global properties are key to shed light on the process of galaxy formation and on the nature of dark matter. Here, we study the scaling relation between the neutral hydrogen (HI) and dark matter mass in isolated rotationally-supported disk galaxies at low redshift. We first show that state-of-the-art galaxy formation simulations predict that the HI-to-dark halo mass ratio decreases with stellar mass for the most massive disk galaxies. We then infer dark matter halo masses from high-quality rotation curve data for isolated disk galaxies in the local Universe, and report on the actual universality of the HI-to-dark halo mass ratio for these observed galaxies. This scaling relation holds for disks spanning a range of 4 orders of magnitude in stellar mass and 3 orders of magnitude in surface brightness. Accounting for the diversity of rotation curve shapes in our observational fits decreases the scatter of the HI-to-dark halo mass ratio while keeping it constant. This finding extends the previously reported discrepancy for the stellar-to-halo mass relation of massive disk galaxies within galaxy formation simulations to the realm of neutral atomic gas. Our result reveals that isolated galaxies with regularly rotating extended HI disks are surprisingly self-similar up to high masses, which hints at mass-independent self-regulation mechanisms that have yet to be fully understood.Comment: 14 pages, 4 figures. Accepted for publication in ApJ

    Combined CO & Dust Scaling Relations of Depletion Time and Molecular Gas Fractions with Cosmic Time, Specific Star Formation Rate and Stellar Mass

    Get PDF
    We combine molecular gas masses inferred from CO emission in 500 star forming galaxies (SFGs) between z=0 and 3, from the IRAM-COLDGASS, PHIBSS1/2 and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks over the same stellar mass/redshift range. We constrain the scaling relations of molecular gas depletion time scale (tdepl) and gas to stellar mass ratio (Mmolgas/M*) of SFGs near the star formation main-sequence with redshift, specific star formation rate (sSFR) and stellar mass (M*). The CO- and dust-based scaling relations agree remarkably well. This suggests that the CO-H2 mass conversion factor varies little within 0.6dex of the main sequence (sSFR(ms,z,M*)), and less than 0.3dex throughout this redshift range. This study builds on and strengthens the results of earlier work. We find that tdepl scales as (1+z)^-0.3 *(sSFR/sSFR(ms,z,M*))^-0.5, with little dependence on M*. The resulting steep redshift dependence of Mmolgas/M* ~(1+z)^3 mirrors that of the sSFR and probably reflects the gas supply rate. The decreasing gas fractions at high M* are driven by the flattening of the SFR-M* relation. Throughout the redshift range probed a larger sSFR at constant M* is due to a combination of an increasing gas fraction and a decreasing depletion time scale. As a result galaxy integrated samples of the Mmolgas-SFR rate relation exhibit a super-linear slope, which increases with the range of sSFR. With these new relations it is now possible to determine Mmolgas with an accuracy of 0.1dex in relative terms, and 0.2dex including systematic uncertainties.Comment: ApJ accepte

    A Revised Design for Microarray Experiments to Account for Experimental Noise and Uncertainty of Probe Response

    Get PDF
    Background Although microarrays are analysis tools in biomedical research, they are known to yield noisy output that usually requires experimental confirmation. To tackle this problem, many studies have developed rules for optimizing probe design and devised complex statistical tools to analyze the output. However, less emphasis has been placed on systematically identifying the noise component as part of the experimental procedure. One source of noise is the variance in probe binding, which can be assessed by replicating array probes. The second source is poor probe performance, which can be assessed by calibrating the array based on a dilution series of target molecules. Using model experiments for copy number variation and gene expression measurements, we investigate here a revised design for microarray experiments that addresses both of these sources of variance. Results Two custom arrays were used to evaluate the revised design: one based on 25 mer probes from an Affymetrix design and the other based on 60 mer probes from an Agilent design. To assess experimental variance in probe binding, all probes were replicated ten times. To assess probe performance, the probes were calibrated using a dilution series of target molecules and the signal response was fitted to an adsorption model. We found that significant variance of the signal could be controlled by averaging across probes and removing probes that are nonresponsive or poorly responsive in the calibration experiment. Taking this into account, one can obtain a more reliable signal with the added option of obtaining absolute rather than relative measurements. Conclusion The assessment of technical variance within the experiments, combined with the calibration of probes allows to remove poorly responding probes and yields more reliable signals for the remaining ones. Once an array is properly calibrated, absolute quantification of signals becomes straight forward, alleviating the need for normalization and reference hybridizations
    • 

    corecore